《提升能力,涨薪可待》-Java并发之AQS全面详解

简介: 在工作上必须保持学习的能力,这样才能在工作得到更好的晋升,涨薪指日可待,欢迎一起学习【提升能力,涨薪可待】系列

前言


是不是感觉在工作上难于晋升了呢?


是不是感觉找工作面试是那么难呢?


是不是感觉自己每天都在996加班呢?


在工作上必须保持学习的能力,这样才能在工作得到更好的晋升,涨薪指日可待,欢迎一起学习【提升能力,涨薪可待】系列


在找工作面试应在学习的基础进行总结面试知识点,工作也指日可待,欢迎一起学习【面试知识,工作可待】系列


最后,理论知识到准备充足,是不是该躬行起来呢?欢迎一起学习【实战演练,拒绝996】系列


一、AQS是什么?有什么用?


AQS全称AbstractQueuedSynchronizer,即抽象的队列同步器,是一种用来构建锁和同步器的框架。


基于AQS构建同步器:


  • ReentrantLock
  • Semaphore
  • CountDownLatch
  • ReentrantReadWriteLock
  • SynchronusQueue
  • FutureTask


优势:


  • AQS 解决了在实现同步器时涉及的大量细节问题,例如自定义标准同步状态、FIFO 同步队列。
  • 基于 AQS 来构建同步器可以带来很多好处。它不仅能够极大地减少实现工作,而且也不必处理在多个位置上发生的竞争问题。


二、AQS核心知识


2.1 AQS核心思想


如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。如图所示:


0.png


Sync queue: 同步队列,是一个双向列表。包括head节点和tail节点。head节点主要用作后续的调度。


1.png


Condition queue: 非必须,单向列表。当程序中存在cindition的时候才会存在此列表。


2.png


2.2 AQS设计思想


  • AQS使用一个int成员变量来表示同步状态
  • 使用Node实现FIFO队列,可以用于构建锁或者其他同步装置
  • AQS资源共享方式:独占Exclusive(排它锁模式)和共享Share(共享锁模式)


AQS它的所有子类中,要么实现并使用了它的独占功能的api,要么使用了共享锁的功能,而不会同时使用两套api,即便是最有名的子类ReentrantReadWriteLock也是通过两个内部类读锁和写锁分别实现了两套api来实现的


2.3 state状态


state状态使用volatile int类型的变量,表示当前同步状态。state的访问方式有三种:


  • getState()
  • setState()
  • compareAndSetState()


2.4 AQS中Node常量含义


CANCELLED


waitStatus值为1时表示该线程节点已释放(超时、中断),已取消的节点不会再阻塞。


SIGNAL


waitStatus为-1时表示该线程的后续线程需要阻塞,即只要前置节点释放锁,就会通知标识为 SIGNAL 状态的后续节点的线程


CONDITION


waitStatus为-2时,表示该线程在condition队列中阻塞(Condition有使用)


PROPAGATE


waitStatus为-3时,表示该线程以及后续线程进行无条件传播(CountDownLatch中有使用)共享模式下, PROPAGATE 状态的线程处于可运行状态


2.5 同步队列为什么称为FIFO呢?


因为只有前驱节点是head节点的节点才能被首先唤醒去进行同步状态的获取。当该节点获取到同步状态时,它会清除自己的值,将自己作为head节点,以便唤醒下一个节点。


2.6 Condition队列


除了同步队列之外,AQS中还存在Condition队列,这是一个单向队列。调用ConditionObject.await()方法,能够将当前线程封装成Node加入到Condition队列的末尾,然后将获取的同步状态释放(即修改同步状态的值,唤醒在同步队列中的线程)。


Condition队列也是FIFO。调用ConditionObject.signal()方法,能够唤醒firstWaiter节点,将其添加到同步队列末尾。


2.7 自定义同步器的实现


在构建自定义同步器时,只需要依赖AQS底层再实现共享资源state的获取与释放操作即可。自定义同步器实现时主要实现以下几种方法:


  • isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
  • tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
  • tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
  • tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
  • tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。


三 AQS实现细节


线程首先尝试获取锁,如果失败就将当前线程及等待状态等信息包装成一个node节点加入到FIFO队列中。 接着会不断的循环尝试获取锁,条件是当前节点为head的直接后继才会尝试。如果失败就会阻塞自己直到自己被唤醒。而当持有锁的线程释放锁的时候,会唤醒队列中的后继线程。


3.1 独占模式下的AQS


所谓独占模式,即只允许一个线程获取同步状态,当这个线程还没有释放同步状态时,其他线程是获取不了的,只能加入到同步队列,进行等待。


很明显,我们可以将state的初始值设为0,表示空闲。当一个线程获取到同步状态时,利用CAS操作让state加1,表示非空闲,那么其他线程就只能等待了。释放同步状态时,不需要CAS操作,因为独占模式下只有一个线程能获取到同步状态。ReentrantLock、CyclicBarrier正是基于此设计的。


例如,ReentrantLock,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。


3.png


独占模式下的AQS是不响应中断的,指的是加入到同步队列中的线程,如果因为中断而被唤醒的话,不会立即返回,并且抛出InterruptedException。而是再次去判断其前驱节点是否为head节点,决定是否争抢同步状态。如果其前驱节点不是head节点或者争抢同步状态失败,那么再次挂起。


3.1.1 独占模式获取资源-acquire方法


acquire以独占exclusive方式获取资源。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。源码如下:


public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
复制代码


流程图:


4.png


  • 调用自定义同步器的tryAcquire()尝试直接去获取资源,如果成功则直接返回;
  • 没成功,则addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
  • acquireQueued()使线程在等待队列中休息,有机会时(轮到自己,会被unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
  • 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。


3.1.2 独占模式获取资源-tryAcquire方法


tryAcquire尝试以独占的方式获取资源,如果获取成功,则直接返回true,否则直接返回false,且具体实现由自定义AQS的同步器实现的。


protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
复制代码


3.1.3 独占模式获取资源-addWaiter方法


根据不同模式(Node.EXCLUSIVE互斥模式、Node.SHARED共享模式)创建结点并以CAS的方式将当前线程节点加入到不为空的等待队列的末尾(通过compareAndSetTail()方法)。如果队列为空,通过enq(node)方法初始化一个等待队列,并返回当前节点。


/**
* 参数
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* 返回值
* @return the new node
*/
private Node addWaiter(Node mode) {
    //将当前线程以指定的模式创建节点node
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    // 获取当前同队列的尾节点
    Node pred = tail;
    //队列不为空,将新的node加入等待队列中
    if (pred != null) {
        node.prev = pred;
         //CAS方式将当前节点尾插入队列中
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    //当队列为empty或者CAS失败时会调用enq方法处理
    enq(node);
    return node;
}
复制代码


其中,队列为empty,使用enq(node)处理,将当前节点插入等待队列,如果队列为空,则初始化当前队列。所有操作都是CAS自旋的方式进行,直到成功加入队尾为止。


private Node enq(final Node node) {
        //不断自旋
        for (;;) {
            Node t = tail;
            //当前队列为empty
            if (t == null) { // Must initialize
             //完成队列初始化操作,头结点中不放数据,只是作为起始标记,lazy-load,在第一次用的时候new
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                //不断将当前节点使用CAS尾插入队列中直到成功为止
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
复制代码


3.1.4 独占模式获取资源-acquireQueued方法


acquireQueued用于已在队列中的线程以独占且不间断模式获取state状态,直到获取锁后返回。主要流程:


  • 结点node进入队列尾部后,检查状态;
  • 调用park()进入waiting状态,等待unpark()或interrupt()唤醒;
  • 被唤醒后,是否获取到锁。如果获取到,head指向当前结点,并返回从入队到获取锁的整个过程中是否被中断过;如果没获取到,继续流程1


final boolean acquireQueued(final Node node, int arg) {
  //是否已获取锁的标志,默认为true 即为尚未
  boolean failed = true;
  try {
      //等待中是否被中断过的标记
      boolean interrupted = false;
      for (;;) {
          //获取前节点
          final Node p = node.predecessor();
          //如果当前节点已经成为头结点,尝试获取锁(tryAcquire)成功,然后返回
          if (p == head && tryAcquire(arg)) {
              setHead(node);
              p.next = null; // help GC
              failed = false;
              return interrupted;
          }
          //shouldParkAfterFailedAcquire根据对当前节点的前一个节点的状态进行判断,对当前节点做出不同的操作
          //parkAndCheckInterrupt让线程进入等待状态,并检查当前线程是否被可以被中断
          if (shouldParkAfterFailedAcquire(p, node) &&
              parkAndCheckInterrupt())
              interrupted = true;
      }
  } finally {
      //将当前节点设置为取消状态;取消状态设置为1
      if (failed)
          cancelAcquire(node);
  }
}
复制代码


3.1.5 独占模式释放资源-release方法


release方法是独占exclusive模式下线程释放共享资源的锁。它会调用tryRelease()释放同步资源,如果全部释放了同步状态为空闲(即state=0),当同步状态为空闲时,它会唤醒等待队列里的其他线程来获取资源。这也正是unlock()的语义,当然不仅仅只限于unlock().


public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
复制代码


3.1.6 独占模式释放资源-tryRelease方法


tryRelease()tryAcquire()一样实现都是由自定义定时器以独占exclusive模式实现的。因为其是独占模式,不需要考虑线程安全的问题去释放共享资源,直接减掉相应量的资源即可(state-=arg)。而且tryRelease()的返回值代表着该线程是否已经完成资源的释放,因此在自定义同步器的tryRelease()时,需要明确这条件,当已经彻底释放资源(state=0),要返回true,否则返回false。


protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }
复制代码


ReentrantReadWriteLock的实现:


protected final boolean tryRelease(int releases) {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        //减掉相应量的资源(state-=arg)
        int nextc = getState() - releases;
        //是否完全释放资源
        boolean free = exclusiveCount(nextc) == 0;
        if (free)
            setExclusiveOwnerThread(null);
        setState(nextc);
        return free;
    }
复制代码

3.1.7 独占模式释放资源-unparkSuccessor


unparkSuccessor用unpark()唤醒等待队列中最前驱的那个未放弃线程,此线程并不一定是当前节点的next节点,而是下一个可以用来唤醒的线程,如果这个节点存在,调用unpark()方法唤醒。


private void unparkSuccessor(Node node) {
    //当前线程所在的结点node
    int ws = node.waitStatus;
    //置零当前线程所在的结点状态,允许失败
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);
    //找到下一个需要唤醒的结点
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        // 从后向前找
        for (Node t = tail; t != null && t != node; t = t.prev)
            //从这里可以看出,<=0的结点,都是还有效的结点
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
         //唤醒
        LockSupport.unpark(s.thread);
}
复制代码


3.2 共享模式下的AQS

共享模式,当然是允许多个线程同时获取到同步状态,共享模式下的AQS也是不响应中断的.


很明显,我们可以将state的初始值设为N(N > 0),表示空闲。每当一个线程获取到同步状态时,就利用CAS操作让state减1,直到减到0表示非空闲,其他线程就只能加入到同步队列,进行等待。释放同步状态时,需要CAS操作,因为共享模式下,有多个线程能获取到同步状态。CountDownLatch、Semaphore正是基于此设计的。


例如,CountDownLatch,任务分为N个子线程去执行,同步状态state也初始化为N(注意N要与线程个数一致):  


5.png

3.2.1 共享模式获取资源-acquireShared方法


acquireShared在共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。


public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}
复制代码


流程:


  • 先通过tryAcquireShared()尝试获取资源,成功则直接返回;
  • 失败则通过doAcquireShared()中的park()进入等待队列,直到被unpark()/interrupt()并成功获取到资源才返回(整个等待过程也是忽略中断响应)。


3.2.2 共享模式获取资源-tryAcquireShared方法


tryAcquireShared()跟独占模式获取资源方法一样实现都是由自定义同步器去实现。但AQS规范中已定义好tryAcquireShared()的返回值:


  • 负值代表获取失败;
  • 0代表获取成功,但没有剩余资源;
  • 正数表示获取成功,还有剩余资源,其他线程还可以去获取。


protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }
复制代码


3.2.3 共享模式获取资源-doAcquireShared方法


doAcquireShared()用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,自己成功拿到相应量的资源后才返回。


private void doAcquireShared(int arg) {
    //加入队列尾部
    final Node node = addWaiter(Node.SHARED);
    //是否成功标志
    boolean failed = true;
    try {
        //等待过程中是否被中断过的标志
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();//获取前驱节点
            if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
                int r = tryAcquireShared(arg);//尝试获取资源
                if (r >= 0) {//成功
                    setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
                    p.next = null; // help GC
                    if (interrupted)//如果等待过程中被打断过,此时将中断补上。
                        selfInterrupt();
                    failed = false;
                    return;
                }
            }
            //判断状态,队列寻找一个适合位置,进入waiting状态,等着被unpark()或interrupt()
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }   
}
复制代码

3.2.4 共享模式释放资源-releaseShared方法


releaseShared()用于共享模式下线程释放共享资源,释放指定量的资源,如果成功释放且允许唤醒等待线程,它会唤醒等待队列里的其他线程来获取资源。


public final boolean releaseShared(int arg) {
    //尝试释放资源
    if (tryReleaseShared(arg)) {
        //唤醒后继结点
        doReleaseShared();
        return true;
    }
    return false;
}
复制代码


独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,这主要是基于独占下可重入的考量;而共享模式下的releaseShared()则没有这种要求,共享模式实质就是控制一定量的线程并发执行,那么拥有资源的线程在释放掉部分资源时就可以唤醒后继等待结点。


https://www.cnblogs.com/waterystone/p/4920797.html


3.2.5共享模式释放资源-doReleaseShared方法


doReleaseShared()主要用于唤醒后继节点线程,当state为正数,去获取剩余共享资源;当state=0时去获取共享资源。


private void doReleaseShared() {
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;
                    //唤醒后继
                unparkSuccessor(h);
            }
            else if (ws == 0 &&
                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;
        }
        // head发生变化
        if (h == head)
            break;
    }
}
复制代码


各位看官还可以吗?喜欢的话,动动手指点个💗,点个关注呗!!谢谢支持!


目录
相关文章
|
4月前
|
安全 Java 编译器
揭秘JAVA深渊:那些让你头大的最晦涩知识点,从泛型迷思到并发陷阱,你敢挑战吗?
【8月更文挑战第22天】Java中的难点常隐藏在其高级特性中,如泛型与类型擦除、并发编程中的内存可见性及指令重排,以及反射与动态代理等。这些特性虽强大却也晦涩,要求开发者深入理解JVM运作机制及计算机底层细节。例如,泛型在编译时检查类型以增强安全性,但在运行时因类型擦除而丢失类型信息,可能导致类型安全问题。并发编程中,内存可见性和指令重排对同步机制提出更高要求,不当处理会导致数据不一致。反射与动态代理虽提供运行时行为定制能力,但也增加了复杂度和性能开销。掌握这些知识需深厚的技术底蕴和实践经验。
96 2
|
4月前
|
安全 Java 调度
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
77 1
|
1月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
1月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
1月前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
55 2
|
2月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
36 1
|
3月前
|
Java API 容器
JAVA并发编程系列(10)Condition条件队列-并发协作者
本文通过一线大厂面试真题,模拟消费者-生产者的场景,通过简洁的代码演示,帮助读者快速理解并复用。文章还详细解释了Condition与Object.wait()、notify()的区别,并探讨了Condition的核心原理及其实现机制。
|
3月前
|
存储 Java
JAVA并发编程AQS原理剖析
很多小朋友面试时候,面试官考察并发编程部分,都会被问:说一下AQS原理。面对并发编程基础和面试经验,专栏采用通俗简洁无废话无八股文方式,已陆续梳理分享了《一文看懂全部锁机制》、《JUC包之CAS原理》、《volatile核心原理》、《synchronized全能王的原理》,希望可以帮到大家巩固相关核心技术原理。今天我们聊聊AQS....
|
4月前
|
存储 Java
Java 中 ConcurrentHashMap 的并发级别
【8月更文挑战第22天】
65 5
|
4月前
|
存储 算法 Java
Java 中的同步集合和并发集合
【8月更文挑战第22天】
53 5