Python matplotlib 散点图

简介: Python matplotlib 散点图

一、整理数据



import pandas as pd 
cnbodf=pd.read_excel('cnboo1.xlsx')
cnbodfsort=cnbodf.sort_values(by=['BO'],ascending=False)
def mkpoints(x,y):
    return len(str(x))*(y/25)-3
cnbodfsort['points']=cnbodfsort.apply(lambda x:mkpoints(x.BO,x.PERSONS),axis=1)
cnbodfgb=cnbodfsort.groupby("TYPE").mean(["bo","prices","persons","points"])
cnbodfsort['type1']=cnbodfsort['TYPE'].apply(lambda x:x.split("/")[0])
cnbodfgb=cnbodfsort.groupby(["type1"])["ID","BO","PRICE","PERSONS","points"].mean()
cnbodfgbsort=cnbodfgb.sort_values("BO",ascending=False)
cnbodfsort.sort_values(by='PERSONS') # 根据电影人数进行排序

fc975a5518d744a795dcf9f512e9abef.png

from matplotlib import pyplot as plt 
plt.style.use('classic') # 画板主题风格
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况")  # 标题
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE) # 散点图
plt.grid() # 网格线
plt.show()

1c42d392c36b4bd5907eb8094643180f.png


二、修改点的样式



from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c='red',edgecolor='pink',s=100,linewidth=4)
plt.grid()
plt.show()

21e5296f4d174270a74d1ddaf6664353.png

5329baab16e14839a8f6e63114e65ee6.png


三、呈现半透明的状态



alpha=0.3
from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c='red',edgecolor='black',s=100,linewidth=4,alpha=0.5)
plt.grid()
plt.show()

注意到当数据较为集中的时候,点的颜色较深,如果数据分布较稀疏的时候,点更透明。18a1bff8a24e4815b66ad537c2ffd4b9.png


四、点呈现多彩的颜色



由于我一共有五十组数据,也就是有50个点,因此当构建colors的时候必须有五十个。5c667d954f7d499eb6f805f3a2dc1063.png

from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
colors=[1,2,3,4,5,6,7,8,9,10]*5
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=100,linewidth=4,alpha=0.5)
plt.grid()
plt.show()
e6dd64049b4e4744b5570b14c2b0e6a6.png

五、让点的大小不一



from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=cnbodfsort.points*10
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
plt.grid()
plt.show()

290648b6ef9b46d79078ffd1f6889ab5.png51ec9cfc69fc4535a1d4d4a70d3ac732.pngcc4cdc042ffc499ca5536dfe09d0a9f6.png

也可以通过使用numpy数组来进行实现:

sizes=list(np.random.randint(100,500,size=(50,)))

66ae785500bc401b9d269311d2e5ff84.png

如果让点变回同色系,则使:

cmap='summer'
import numpy as np
from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,cmap='summer',edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")
plt.xscale('log')
plt.xscale('log')
plt.grid()
plt.show()

10160dfbc5324ef0b83d82aef9a60702.png

import numpy as np
from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,cmap='winter',c=cnbodfsort.PERSONS,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")
plt.xscale('log')
plt.xscale('log')
plt.grid()
plt.show()

c5dbcb0d73924e6984a5128adb19167a.png


六、侧边呈现颜色卡



cbar=plt.colorbar()
import numpy as np
from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")
plt.grid()
plt.show()
d3b1f9c4365a40ed83c4a90d1faf9718.png

七、改变集中性



plt.xscale('log')
plt.xscale('log')
import numpy as np
from matplotlib import pyplot as plt 
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 
colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")
plt.xscale('log')
plt.xscale('log')
plt.grid()
plt.show()

可以看到横坐标轴发生了变化。afbc647ad9af404c9f82cde6224fe625.png



相关文章
|
3月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
58 1
|
9天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
48 8
|
18天前
|
Java Go C#
Matplotlib 散点图
Matplotlib 散点图
25 0
Matplotlib 散点图
|
1月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
1月前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
70 5
|
1月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
67 5
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 1
通过设置参数如点的大小(`s`)、颜色(`c`)和样式(`marker`)等,可以定制图表外观。示例展示了如何用两个长度相同的数组分别表示 x 和 y 轴的值来创建基本散点图。
47 12
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 散点图 7
使用 Matplotlib 的 `scatter()` 方法绘制散点图。该方法接受多个参数,如 x 和 y 数据点、点的大小(s)、颜色(c)和样式(marker)等。通过示例展示了如何利用颜色数组和颜色映射 (`cmap`) 来增强图表的表现力,并使用 `colorbar()` 方法添加颜色条,使数据可视化更加直观。
34 1
|
3月前
|
机器学习/深度学习 搜索推荐 数据可视化
Python量化炒股常用的Matplotlib包
Python量化炒股常用的Matplotlib包
37 7