Sysbench测试神器:一条命令生成百万级测试数据

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: Sysbench测试神器:一条命令生成百万级测试数据

1. 基准测试


基准测试(benchmarking)是性能测试的一种类型,强调的是对一类测试对象的某些性能指标进行定量的、可复现、可对比的测试。

进一步来理解,基准测试是在某个时候通过基准测试建立一个已知的性能水平(称为基准线),当系统的软硬件环境发生变化之后再进行一次基准测试以确定那些变化对性能的影响,这也是基准测试最常见的用途。其他用途包括测定某种负载水平下的性能极限、管理系统或环境的变化、发现可能导致性能问题的条件等等。


2. 基准测试的作用


对于大多数Web应用而言,系统的瓶颈往往很容易发生在数据库端,原因很简单:Web应用中的其他因素,例如网络带宽、负载均衡节点、应用服务器(包括CPU、内存、硬盘灯、连接数等)、缓存,都很容易通过水平的扩展(俗称加机器)来实现性能的提高。而对于数据库如MySQL,由于数据一致性的要求,无法通过增加机器来分散向数据库写数据带来的压力;虽然可以通过前置缓存(Redis等)、读写分离、分库分表来减轻压力,但是与系统其它组件的水平扩展相比,受到了太多的限制。

而对数据库的基准测试的作用,就是分析在当前的配置下(包括硬件配置、OS、数据库设置等),数据库的性能表现,从而找出数据库的性能阈值,并根据实际系统的要求调整配置。除此之外,对数据库服务器进行基准测试,也通常用于观察对比数据库结构修改之前以及修改之后,其性能会受到什么样的影响。


3. 基准测试与压力测试区别


很多时候,基准测试和压力测试在实际使用的过程中,很容易被弄混淆。基准测试可以理解为针对系统的一种压力测试。但基准测试不关心业务逻辑,更加简单、直接、易于测试,数据可以由工具生成,不要求真实;而压力测试一般考虑业务逻辑(如购物车业务),要求真实的数据。


4. 基准测试的指标及工具


常见的数据库指标包括:

  • TPS/QPS:主要用于衡量吞吐量。
  • 响应时间:包括平均响应时间、最小响应时间、最大响应时间、时间百分比等,其中时间百分比参考意义较大,如前95%的请求的最大响应时间。
  • 并发量:同时处理的查询请求的数量。

如果只是针对数据库服务器,例如只针对MySQL数据库开展基准测试,一般可以使用专门的工具进行,例如mysqlslapsysbench等。

mysqlslap是MySQL5.1.4之后自带的benchmark基准测试工具,该工具可以模拟多个客户端同时并发的向服务器发出查询更新,给出了性能测试数据而且提供了多种引擎的性能比较。

其中,sysbenchmysqlslap更通用、更强大,本文将给大家介绍如何使用sysbench来开展基准测试,之所以说它是测试神器,是因为除了能对利用它对各类基础设施对象开展基准测试以外,还可以利用它的实现思路帮助我们生成成百上千万的测试数据,往下看,一起来揭秘吧~


5. sysbench基准测试


sysbench是一个模块化的、跨平台、多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况,它主要包括以下几种方式的测试:

  • cpu性能
  • 磁盘io性能
  • 调度程序性能
  • 内存分配及传输速度
  • POSIX线程性能
  • 数据库性能(OLTP基准测试)

目前sysbench主要支持MySQL,pgsql,Oracle这3类数据库

默认支持MySQL,如果需要测试Oracle/PostgreSQL,则在configure时需要加上–with-oracle或者–with-pgsql参数.

通过sysbench工具对数据库开展基准测试最大的亮点在于:可以自动帮你在数据库里构造出来大量的数据,你想要多少数据,就自动给你构造出来多少条数据。同时还可以模拟几千个线程并发的访问数据库,模拟使用各种各样的 SQL 语句,包括模拟出来各种事务提交到你的数据库里去,甚至可以模拟出几十万的 TPS 去压测数据库。

6. sysbench基本语法

1、在使用前,先要需要安装,建议在Linux下安装sysbench

yum install -y sysbench

2、sysbench的基本语法如下:

sysbench [options]... [testname] [command]

微信图片_20220526120907.png

其中,command是sysbench要执行的命令,包括prepareruncleanup。顾名思义:

  • prepare是为测试提前准备数据
  • run是执行正式的测试
  • cleanup是在测试完成后对数据库进行清理。

testname指定了要进行的测试,在老版本的sysbench中,可以通过--test参数指定测试的脚本;而在新版本中,--test参数已经声明为废弃,可以不使用--test,而是直接指定脚本。

如下两种方法效果是一样的:

sysbench --test=./tests/include/oltp_legacy/oltp.lua
sysbench ./tests/include/oltp_legacy/oltp.lua

测试时使用的脚本为lua脚本,可以使用sysbench自带脚本,也可以自己开发。对于大多数应用,使用sysbench自带的脚本就足够了。不同版本的sysbench中,lua脚本的位置可能不同,可以自己在sysbench路径下使用find命令搜索oltp.lua

大多数数据服务都是oltp类型的,如果你不了解什么是oltp,那么大概率你的数据服务就是oltp类型的。


7. sysbench使用实践(一键构建百万级数据)


接下来,给大家演示一下,如何使用sysbench来对MySQL开展基准测试,以及如何利用sysbench一条命令来构建百万级测试数据。

注:sysbench基准测试技能,在笔者的全栈测试开发训练营重磅消息 | 2020年最新全栈测试开发技能实战指南(第1期)数据库版块中,对训练营的学员有过专题介绍,本文算是免费给读者送技能福利了。


操作方法:

1、在基准测试prepare准备阶段,先创建默认的测试库,例如sysbench_test

mysql> create database sysbench_test;      #创建数据库

如此处,创建sysbench_test数据库微信图片_20220526121004.png

2、准备数据,时间比较长,本文主要为了演示方法,因此把table_size设置的小一点

sysbench /usr/share/sysbench/oltp_read_write.lua --tables=5 --table_size=100 --mysql-user=root --mysql-password=xxx --mysql-host=192.168.0.103 --mysql-port=3306 --mysql-db=sysbench_test prepare

其中,几个关键参数:

  • --tables:指定生成表的数量,此处设置了5张表,表明生成5张测试表,读者可根据实际需要,调整此值。
  • --table_size:指定生成表中生成的数据量,上述例子,表明每张表生成100条测试数据,实际可以根据需要调整引值,比如调整为:1000000,即代表生成一百万条测试数据。
  • --mysql-db: 连接的测试数据库名称。其它几项参数较为简单,就不一一介绍了。

执行上述命令后,输出如下:微信图片_20220526121055.png

命令执行成功后,可以打开数据库查看生成的数据是否和设置的对应:微信图片_20220526121135.png

可以看到,已经自动生成了100条测试数据了,如果需要一键成生成百万条测试数据,只需要将--table_size=100 修改为 --table_size=1000000即可。

3、选择一个lua脚本进行测试,如验证读写性能,执行命令如下:

sysbench /usr/share/sysbench/oltp_read_write.lua --mysql-user=root --mysql-password=xxx --mysql-host=192.168.0.103 --mysql-port=3306 --mysql-db=sysbench_test --tables=5 --table_size=100 --threads=10 --time=30 --report-interval=3 run

上述命令,表明使用了10个并发线程数,执行时间为30秒,每3秒输出一次测试信息。实际读者可以将--threads=10--time=30值调大一些。

输出信息类似如下:微信图片_20220526121232.png其中,对于我们比较重要的信息包括:

  • queries:查询总数及qps
  • transactions:事务总数及tps
  • Latency-95th percentile:前95%的请求的响应时间。

4、执行完测试,拿到所需要的测试结后,最后一步,记得要清理数据,否则后面的测试可能会受到影响。

sysbench /usr/share/sysbench/oltp_read_write.lua --tables=5 --
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
28天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
32 6
|
1月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
30 1
|
1月前
|
关系型数据库 MySQL 测试技术
【赵渝强老师】MySQL的基准测试与sysbench
本文介绍了MySQL数据库的基准测试及其重要性,并详细讲解了如何使用sysbench工具进行测试。内容涵盖sysbench的安装、基本使用方法,以及具体测试MySQL数据库的步骤,包括创建测试数据库、准备测试数据、执行测试和清理测试数据。通过这些步骤,可以帮助读者掌握如何有效地评估MySQL数据库的性能。
|
2月前
|
存储 测试技术 数据库
数据驱动测试和关键词驱动测试的区别
数据驱动测试 数据驱动测试或 DDT 也被称为参数化测试。
37 1
|
2月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
569 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
165 0
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
67 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 XML 并行计算
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用YOLOX完成图像目标检测任务的完整流程,包括数据准备、模型训练、验证和测试。
248 0
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
57 4
|
2月前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
77 1