主流实时流处理计算框架Flink初体验。

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以执行批处理和流处理程序。此外,Flink的运行时本身也支持迭代算法的执行。Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行状态计算。Flink 被设计为在所有常见的集群环境中运行,以内存中的速度和任何规模执行计算。Apache Flink 是为分布式、高性能、随时可用以及准确的流处理应用程序打造的开源流处理框架。

1.png

概述


Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以执行批处理和流处理程序。此外,Flink的运行时本身也支持迭代算法的执行。百度百科


Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行状态计算。Flink 被设计为在所有常见的集群环境中运行,以内存中的速度和任何规模执行计算。Apache Flink 是为分布式、高性能、随时可用以及准确的流处理应用程序打造的开源流处理框架。

1.png


特点


低延时实时流处理

代码编写简单

Flink 已经是最近几代通用大数据框架之一,相对一系列老前辈来说应用广泛、使用简单。

支持大型、复杂的状态处理

允许有数百 GB 以上的状态存储。

支持大规模分布式部署

自身有 Standalone 集群模式,也支持部署到 Yarn、K8S 上。

迭代速度快

结果准确性和良好的容错性


使用的一般场景


机器资源非常的多:能够提供至少 24 个 CPU 核心和百 GB 以上的内存,Flink 所在的机器硬盘必须为 SSD

吞吐量大或未来扩展要求很大:每秒一万条只能勉强算大,十万条可以算大

需求复杂:有大量复杂的清洗、去重、转换等操作 对低延时有极高要求:10

秒以内的延迟才能算作低延迟,1 秒以内的延迟要求就需要非常仔细地处理


事件驱动


事件驱动类型的应用,它是一类有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以 kafka 为代表的消息队列几乎都是事件驱动型应用。


1.png

流处理和批处理


流处理和批处理是两种不同处理数据的方式,接下来我们详细的学习一下两者的不同。


批处理


批处理的特点是有界、持久、大量,非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。换句话说,批处理的触发点是数据无关的。要么是定时触发,要么是一定数量触发,要么是一张表、一套文件导入后触发。


流处理


流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。换句话说,流处理的触发点是数据相关的。是一套由事件驱动的体系结构,其中任何一个部分都是收到一条数据后立刻分析与触发有关的信息并执行处理,例如 offset、例如 time、例如特定字段值满足要求。


两者区别对比

数据时效性

流式计算实时、低延迟.。| 批处理非实时、高延迟


数据特征

流式计算的数据一般是动态的、没有边界的。| 批处理的数据一般则是静态数据。


应用场景

流式计算应用在实时场景,时效性要求比较高的场景,比如实时推荐、业务监控等.


批处理应用在实时性要求不高、离线计算的场景下,比如数据分析、离线报表等.


运行方式

流式计算的任务是持续进行的。 | 批处理是一个或一系列一次性的 job


处理效能

流式计算效能一般比较低。对任何单独的请求都完整处理,甚至需要执行与乱序和状态相关的补偿操作;需要全天候预备着大量计算资源,如果有灵活的规划和调度则可以大幅缓解这个问题。


批处理的计算效能很高。一次性快速将大批量数据执行完毕,有着大量的类似压缩、SIMD 等的优化手段,效能可以轻易比流式计算高出多个数量级;按需执行,平常不运行时可以不消耗任何计算资源。


Flink中的数据处理方式


在flink的世界里,一切数据都是由流组成的,任何类型的数据都是作为事件流产生的。信用卡交易、传感器测量、机器日志或网站或移动应用程序上的用户交互,所有这些数据都以流的形式生成,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。


无界流


无界流有一个开始但没有定义的结束。它们不会终止并在生成数据时提供数据。必须连续处理无界流,即事件必须在被摄取后立即处理。不可能等待所有输入数据到达,因为输入是无界的并且不会在任何时间点完成。处理无界数据通常需要以特定顺序(例如事件发生的顺序)摄取事件,以便能够推断结果的完整性。


无界数据流就是指有始无终的数据,数据一旦开始生成就会持续不断的产生新的数据,即数据没有时间边界。无界数据流需要持续不断地处理。


有界流


有界流具有定义的开始和结束。可以通过在执行任何计算之前摄取所有数据来处理有界流。处理有界流不需要有序摄取,因为始终可以对有界数据集进行排序。有界流的处理也称为批处理。


有界数据流就是指输入的数据有始有终。例如数据可能是一分钟或者一天的交易数据等等

1.png


Flink编程模型(API)


2.png


用于开发的是第三层,即DataStrem/DataSetAPI。用户可以使用DataStream API处理无界数据流,使用DataSet API处理有界数据流。同时这两个API都提供了各种各样的接口来处理数据。例如常见的map、filter、flatMap等等,而且支持python,scala,java等编程语言。


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
98 0
|
1月前
|
SQL 分布式计算 数据处理
Structured Streaming和Flink实时计算框架的对比
本文对比了Structured Streaming和Flink两大流处理框架。Structured Streaming基于Spark SQL,具有良好的可扩展性和容错性,支持多种数据源和输出格式。Flink则以低延迟、高吞吐和一致性著称,适合毫秒级的流处理任务。文章详细分析了两者在编程模型、窗口操作、写入模式、时间语义、API和库、状态管理和生态系统等方面的优劣势。
|
3月前
|
算法 API Apache
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
680 2
Flink CDC:新一代实时数据集成框架
|
2月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
55 1
|
2月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
161 0
|
4月前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
57 0
|
4月前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
85 0
|
4月前
|
监控 搜索推荐 数据挖掘
Flink流处理与批处理大揭秘:实时与离线,一文让你彻底解锁!
【8月更文挑战第24天】Apache Flink 是一款开源框架,擅长流处理与批处理。流处理专攻实时数据流,支持无限数据流及事件驱动应用,实现数据的连续输入与实时处理。批处理则聚焦于静态数据集,进行一次性处理。两者差异体现在处理方式与应用场景:流处理适合实时性要求高的场景(例如实时监控),而批处理更适用于离线数据分析任务(如数据挖掘)。通过提供的示例代码,读者可以直观理解两种模式的不同之处及其实际应用。
303 0
|
4月前
|
消息中间件 大数据 Kafka
Apache Flink 大揭秘:征服大数据实时流处理的神奇魔法,等你来解锁!
【8月更文挑战第5天】Apache Flink 是一款强大的开源大数据处理框架,专长于实时流处理。本教程通过两个示例引导你入门:一是计算数据流中元素的平均值;二是从 Kafka 中读取数据并实时处理。首先确保已安装配置好 Flink 和 Kafka 环境。第一个 Java 示例展示了如何创建流执行环境,生成数据流,利用 `flatMap` 转换数据,并使用 `keyBy` 和 `sum` 计算平均值。第二个示例则演示了如何设置 Kafka 消费者属性,并从 Kafka 主题读取数据。这两个示例为你提供了使用 Flink 进行实时流处理的基础。随着进一步学习,你将能应对更复杂的实时数据挑战。
87 0
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
下一篇
DataWorks