OpenCV2.4版本的camshiftdemo.cpp的详细注释

简介:

要我怎么感谢这位仁兄。。。可怜

#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <ctype.h>

using namespace cv;
using namespace std;

Mat image;

bool backprojMode = false;
bool selectObject = false;//用来判断是否选中,当鼠标左键按下时为true,左键松开时为false
int trackObject = 0;
bool showHist = true;
Point origin;//选中的起点
Rect selection;//选中的区域
int vmin = 10, vmax = 256, smin = 30;//图像掩膜需要的边界常数

//鼠标事件响应函数,这个函数从按下左键时开始响应直到左键释放
static void onMouse( int event, int x, int y, int, void* )
{
    if( selectObject )
    {
		//选择区域的x坐标选起点与当前点的最小值,保证鼠标不管向右下角还是左上角拉动都正确选择
        selection.x = MIN(x, origin.x);
        selection.y = MIN(y, origin.y);
		//获得选择区域的宽和高
        selection.width = std::abs(x - origin.x);
        selection.height = std::abs(y - origin.y);
		//这条语句多余,注释掉不影响结果
    //  selection &= Rect(0, 0, image.cols, image.rows);
    }

    switch( event )
    {
    case CV_EVENT_LBUTTONDOWN://按下鼠标时,捕获点origin
        origin = Point(x,y);
        selection = Rect(x,y,0,0);
        selectObject = true;//这时switch前面的if语句条件为true,执行该语句
        break;
    case CV_EVENT_LBUTTONUP://松开鼠标时,捕获width和height
        selectObject = false;
        if( selection.width > 0 && selection.height > 0 )
            trackObject = -1;//重新计算直方图
        break;
    }
}

static void help()//打印控制按键说明
{
    cout << "\nThis is a demo that shows mean-shift based tracking\n"
            "You select a color objects such as your face and it tracks it.\n"
            "This reads from video camera (0 by default, or the camera number the user enters\n"
            "Usage: \n"
            "   ./camshiftdemo [camera number]\n";

    cout << "\n\nHot keys: \n"
            "\tESC - quit the program\n"
            "\tc - stop the tracking\n"
            "\tb - switch to/from backprojection view\n"
            "\th - show/hide object histogram\n"
            "\tp - pause video\n"
            "To initialize tracking, select the object with mouse\n";
}

const char* keys =
{
    "{1|  | 0 | camera number}"
};

int main( int argc, const char** argv )
{
    help();

    VideoCapture cap;
    Rect trackWindow;//要跟踪的窗口
    int hsize = 16;//创建直方图时要用的常量
    float hranges[] = {0,180};
    const float* phranges = hranges;
    CommandLineParser parser(argc, argv, keys);
    int camNum = parser.get<int>("1");//现在camNum = 0

    cap.open(camNum);
    //摄像头画面捕捉不成功则退出程序
    if( !cap.isOpened() )
    {
        help();
        cout << "***Could not initialize capturing...***\n";
        cout << "Current parameter's value: \n";
        parser.printParams();//打印出cmd参数信息
        return -1;
    }
    //关于显示窗口的一些设置
    namedWindow( "Histogram", 0 );
    namedWindow( "CamShift Demo", 0 );
    //设置鼠标事件,把鼠标响应与onMouse函数关联起来
    setMouseCallback( "CamShift Demo", onMouse, 0 );
    //创建三个滑块条,特定条件用滑块条选择不同参数能获得较好的跟踪效果
    createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );
    createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );
    createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );

    //创建Mat变量,frame, hsv, hue, mask, hist, histimg, backproj;其中histimg初始化为200*300的零矩阵
    Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
    bool paused = false;

    //主循环
    for(;;)
    {
        if( !paused )
        {
            cap >> frame;//从摄像头输入frame
            if( frame.empty() )//为空,跳出主循环
                break;
        }

        frame.copyTo(image);//frame存入image

        if( !paused )
        {
            cvtColor(image, hsv, CV_BGR2HSV);//将BGR转换成HSV格式,存入hsv中,hsv是3通道

            if( trackObject )//松开鼠标左键时,trackObject为-1,执行核心部分
            {
                int _vmin = vmin, _vmax = vmax;

                //inRange用来检查元素的取值范围是否在另两个矩阵的元素取值之间,返回验证矩阵mask(0-1矩阵)
                //这里用于制作掩膜板,只处理像素值为H:0~180,S:smin~256, V:vmin~vmax之间的部分。mask是要求的,单通道
                inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
                        Scalar(180, 256, MAX(_vmin, _vmax)), mask);

                int ch[] = {0, 0};
				//type包含通道信息,例如CV_8UC3,而深度信息depth不包含通道信息,例如CV_8U.
                hue.create(hsv.size(), hsv.depth());//hue是单通道
                mixChannels(&hsv, 1, &hue, 1, ch, 1);//将H分量拷贝到hue中,其他分量不拷贝。

                if( trackObject < 0 )
                {
                    //roi为选中区域的矩阵,maskroi为0-1矩阵
                    Mat roi(hue, selection), maskroi(mask, selection);
                    //绘制色调直方图hist,仅限于用户选定的目标矩形区域
                    calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);
                    normalize(hist, hist, 0, 255, CV_MINMAX);//必须是单通道,hist是单通道。归一化,范围为0-255

                    trackWindow = selection;
                    trackObject = 1;//trackObject置1,接下来就不需要再执行这个if块了
					
                    histimg = Scalar::all(0);//用于显示直方图
                    //计算每个直方的宽度
                    int binW = histimg.cols / hsize;//hsize为16,共显示16个
                    Mat buf(1, hsize, CV_8UC3);//

                    for( int i = 0; i < hsize; i++ )
						//直方图每一项的颜色是根据项数变化的
                        buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);
                    cvtColor(buf, buf, CV_HSV2BGR);
                    //量化等级一共有16个等级,故循环16次,画16个直方块
                    for( int i = 0; i < hsize; i++ )
                    {
                        int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//获取直方图每一项的高
                        //画直方图。opencv中左上角为坐标原点
                        rectangle( histimg, Point(i*binW,histimg.rows),
                                   Point((i+1)*binW,histimg.rows - val),
                                   Scalar(buf.at<Vec3b>(i)), -1, 8 );
                    }
                }
                //根据直方图hist计算整幅图像的反向投影图backproj,backproj与hue相同大小
                calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
                //计算两个矩阵backproj、mask的每个元素的按位与,返回backproj
                backproj &= mask;
                //调用最核心的camshift函数
				//TermCriteria是算法完成的条件
                RotatedRect trackBox = CamShift(backproj, trackWindow,
                                    TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));
                if( trackWindow.area() <= 1 )
                {
                    int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;
                    trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
                                       trackWindow.x + r, trackWindow.y + r) &
                                  Rect(0, 0, cols, rows);
                }

                if( backprojMode )//转换显示方式,将backproj显示出来
                    cvtColor( backproj, image, CV_GRAY2BGR );
				//画出椭圆,第二个参数是一个矩形,画该矩形的内接圆
                ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );
            }
        }
        else if( trackObject < 0 )
            paused = false;

        if( selectObject && selection.width > 0 && selection.height > 0 )
        {
            Mat roi(image, selection);
            bitwise_not(roi, roi);
        }

        imshow( "CamShift Demo", image );
        imshow( "Histogram", histimg );

        //每轮都要等待用户的按键控制
        char c = (char)waitKey(10);
        if( c == 27 )//"Esc"键,直接退出
            break;
        switch(c)
        {
        case 'b'://转换显示方式
            backprojMode = !backprojMode;
            break;
        case 'c'://停止追踪
            trackObject = 0;
            histimg = Scalar::all(0);
            break;
        case 'h'://隐藏或显示直方图
            showHist = !showHist;
            if( !showHist )
                destroyWindow( "Histogram" );
            else
                namedWindow( "Histogram", 1 );
            break;
        case 'p'://暂停
            paused = !paused;//frame停止从摄像头获取图像,只显示旧的图像
            break;
        default:
            ;
        }
    }

    return 0;
}

OpenCV2.4版本的camshiftdemo.cpp的详细注释

相关文章
|
6月前
|
算法 API 计算机视觉
[opencv学习笔记] jiazhigang 30讲源码C++版本(含Makefile)
[opencv学习笔记] jiazhigang 30讲源码C++版本(含Makefile)
74 0
|
1月前
|
机器学习/深度学习 监控 算法
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
49 3
|
机器学习/深度学习 并行计算 openCL
OpenCV各版本差异与演化,从1.x到4.0
最近因项目需要,得把OpenCV捡起来,登录OpenCV官网,竟然发现release了4.0.0-beata版本,所以借此机会,查阅资料,了解下OpenCV各版本的差异及其演化过程
443 0
|
计算机视觉
OpenCV交叉编译ARM版本
OpenCV交叉编译ARM版本
230 0
OpenCV交叉编译ARM版本
|
Java Linux 计算机视觉
全网首发:LINUX OpenCV编译java/jar版本注意事项
全网首发:LINUX OpenCV编译java/jar版本注意事项
414 0
|
计算机视觉 C++ Python
超详细OpenCV 教学1(python语言版本)---安装OpenCV
超详细OpenCV 教学1(python语言版本)---安装OpenCV
337 0
|
Ubuntu 计算机视觉
Ubuntu环境下ROS安装自己OPENCV版本(下)
Ubuntu环境下ROS安装自己OPENCV版本(下)
1144 0
Ubuntu环境下ROS安装自己OPENCV版本(下)
|
Ubuntu Shell 开发工具
Ubuntu环境下ROS安装自己OPENCV版本(上)
Ubuntu环境下ROS安装自己OPENCV版本(上)
Ubuntu环境下ROS安装自己OPENCV版本(上)
|
并行计算 API 计算机视觉
L0 范数图像平滑(L0 Smooth) 代码及详细注释 【OpenCV】
L0 范数图像平滑(L0 Smooth) 代码及详细注释 【OpenCV】
450 0
L0 范数图像平滑(L0 Smooth) 代码及详细注释 【OpenCV】
下一篇
无影云桌面