从源码看异步任务计算FutureTask

简介: 大家是否熟悉FutureTask呢?或者说你有没有异步计算的需求呢?FutureTask就能够很好的帮助你实现异步计算,并且可以实现同步获取异步任务的计算结果。下面我们就一起从源码分析一下FutureTask。

了解一下什么是FutureTask?

FutureTask 是一个可取消的异步计算。

FutureTask提供了对Future的基本实现,可以调用方法去开始和取消一个计算,可以查询计算是否完成,并且获取计算结果。

FutureTask只能在计算完成后获取到计算结果,一旦计算完成,将不能重启或者取消,除非调用runAndReset方法。

FutureTask除了实现了Future接口以外,还实现了Runnable接口,因此FutureTask是可以交由线程池的Executor执行,也可以直接使用一个异步线程调用执行(futureTask.run())。

FutureTask 是如何实现的呢?

首先,我们看一下FutureTask类的继承结构,如下图,它实现的是RunnableFuture接口,而RunnableFuture继承自Future和函数式接口Runnable,所以说FutureTask本质就是一个可运行的Future。

image.png

Future 接口约定了一些异步计算类必须要实现的功能,源码如下:

package java.util.concurrent;
​
public interface Future<V> {
​
    /**
     * 尝试取消任务的执行,并返回取消结果。
     * 参数mayInterruptIfRunning:是否中断线程。
     */
    boolean cancel(boolean mayInterruptIfRunning);
​
    /**
     * 判断任务是否被取消(正常结束之前被被取消返回true)
     */
    boolean isCancelled();
​
    /**
     * 判断当前任务是否执行完毕,包括正常执行完毕、执行异常或者任务取消。
     */
    boolean isDone();
​
    /**
     * 获取任务执行结果,任务结束之前会阻塞。
     */
    V get() throws InterruptedException, ExecutionException;
​
    /**
     * 在指定时间内尝试获取执行结果。若超时则抛出超时异常TimeoutException
     */
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}
​

Runnable 接口我们都很熟悉,他就是一个函数式接口,我们常用其创建一个线程。

package java.lang;
​
@FunctionalInterface
public interface Runnable {
    
    public abstract void run();
}

FutureTask就是一个将要被执行的任务,它包含了以上接口具体的实现,FutureTask内部定义了任务的状态state和一些状态的常量,它的内部核心是一个Callable callable,我们通过构造函数可以传入callable或者是runnable,最后都会内部转为callable,因为我们需要获取异步任务的执行结果,只有通过Callable创建的线程才会返回结果。

我们可以通过此时的状态判断Future中isCancelled(),isDone()的返回结果。

以下为FutureTask源码,内含核心源码分析注释

package java.util.concurrent;
import java.util.concurrent.locks.LockSupport;

public class FutureTask<V> implements RunnableFuture<V> {

    /**
     * 任务的运行状态
     */
    private volatile int state;
    private static final int NEW          = 0; // 新建
    private static final int COMPLETING   = 1; // 完成
    private static final int NORMAL       = 2; // 正常
    private static final int EXCEPTIONAL  = 3; // 异常
    private static final int CANCELLED    = 4; // 取消
    private static final int INTERRUPTING = 5; // 中断中
    private static final int INTERRUPTED  = 6; // 中断的

    private Callable<V> callable;

    /**
      * 返回结果
      */
    private Object outcome; 

    private volatile Thread runner;

    private volatile WaitNode waiters;
    
    ...
    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       
    }

    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       
    }
    
    public boolean isCancelled() {
        return state >= CANCELLED;
    }

    public boolean isDone() {
        return state != NEW;
    }
    
    /*
     * 取消任务实现
     *   如果任务还没有启动就调用了cancel(true),任务将永远不会被执行。
     *   如果任务已经启动,参数mayInterruptIfRunning将决定任务是否应该中断执行该任务的线程,以尝试中断该任务。
     *   如果任务任务已经取消、已经完成或者其他原因不能取消,尝试将失败。
     */
    public boolean cancel(boolean mayInterruptIfRunning) {
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                  mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
            return false;
        try {    // in case call to interrupt throws exception
            if (mayInterruptIfRunning) {
                try {
                    Thread t = runner;
                    if (t != null)
                        t.interrupt();
                } finally { // final state
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
                }
            }
        } finally {
            finishCompletion();
        }
        return true;
    }
    
        /*
     * 等待获取结果
     *   获取当前状态,判断是否执行完成。并且判断时间是否超时
     *   如果任务没有执行完成,就阻塞等待完成,若超时抛出超时等待异常。
     */
    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }

  /*
     * 等待获取结果
     *   获取当前状态,判断是否执行完成。
     *   如果任务没有执行完成,就阻塞等待完成。
     */
    public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
            throw new TimeoutException();
        return report(s);
    }
    
    /**
     * 根据状态判断返回结果还是异常
     */
    private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }
    
    protected void done() { }
    
    /**
     * 设置结果借助CAS确认状态是否完成状态
     */
    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }
    
    /**
     * 设置异常,当运行完成出现异常,设置异常状态
     */
    protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = t;
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            finishCompletion();
        }
    }
    
    /*
     * 执行callable获取结果,或者异常
     *   判断状态是不是启动过的,如果是新建才可以执行run方法
     */
    public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            runner = null;
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }
    
    /**
     * 重新执行
     */
    protected boolean runAndReset() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return false;
        boolean ran = false;
        int s = state;
        try {
            Callable<V> c = callable;
            if (c != null && s == NEW) {
                try {
                    c.call(); // don't set result
                    ran = true;
                } catch (Throwable ex) {
                    setException(ex);
                }
            }
        } finally {
            runner = null;
            s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
        return ran && s == NEW;
    }
    
    /*
     * 处理可能取消的中断
     */
    private void handlePossibleCancellationInterrupt(int s) {
        if (s == INTERRUPTING)
            while (state == INTERRUPTING)
                Thread.yield(); 
    }
    
    static final class WaitNode {
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

    /**
     * 移除并唤醒所有等待线程,执行done,置空callable
     */
    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

    /**
     * 等待完成
     * 首先判断是否超时
     * 处理中断的,然后处理异常状态的,处理完成的...
     */
    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

    /**
     * 去除等待
     */
    private void removeWaiter(WaitNode node) {
        if (node != null) {
            node.thread = null;
            retry:
            for (;;) {          // restart on removeWaiter race
                for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                    s = q.next;
                    if (q.thread != null)
                        pred = q;
                    else if (pred != null) {
                        pred.next = s;
                        if (pred.thread == null) // check for race
                            continue retry;
                    }
                    else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                          q, s))
                        continue retry;
                }
                break;
            }
        }
    }

    // Unsafe mechanics
    private static final sun.misc.Unsafe UNSAFE;
    private static final long stateOffset;
    private static final long runnerOffset;
    private static final long waitersOffset;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> k = FutureTask.class;
            stateOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("state"));
            runnerOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("runner"));
            waitersOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("waiters"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }

}    

FutureTask 运行流程

一般来说,我们可以认为FutureTask具有以下三种状态:

  1. 未启动:新建的FutureTask,在run()没执行之前,FutureTask处于未启动状态。

    private static final int NEW          = 0; // 新建
  2. 已启动:FutureTask对象的run方法启动并执行的过程中,FutureTask处于已启动状态。
  3. 已完成:FutureTask正常执行结束,或者FutureTask执行被取消(FutureTask对象cancel方法),或者FutureTask对象run方法执行抛出异常而导致中断而结束,FutureTask都处于已完成状态。

    private static final int COMPLETING   = 1; // 完成
    private static final int NORMAL       = 2; // 完成后正常设置结果
    private static final int EXCEPTIONAL  = 3; // 完成后异常设置异常
    private static final int CANCELLED    = 4; // 执行取消
    private static final int INTERRUPTING = 5; // 中断中
    private static final int INTERRUPTED  = 6; // 中断的

FutureTask 的使用

使用一(直接新建一个线程调用):

FutureTask<Integer> task = new FutureTask<>(new Callable() {
    @Override
    public Integer call() throws Exception {
        return sum();
    }
});
new Thread(task).stat();
Integer result = task.get();

使用二(结合线程池使用)

FutureTask<Integer> task = new FutureTask<>(new Callable() {
    @Override
    public Integer call() throws Exception {
        return sum();
    }
});
Executors.newCachedThreadPool().submit(task);
Integer result = task.get();
目录
相关文章
|
2月前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
61 3
|
4月前
|
Java
JAVA并发编程系列(13)Future、FutureTask异步小王子
本文详细解析了Future及其相关类FutureTask的工作原理与应用场景。首先介绍了Future的基本概念和接口方法,强调其异步计算特性。接着通过FutureTask实现了一个模拟外卖订单处理的示例,展示了如何并发查询外卖信息并汇总结果。最后深入分析了FutureTask的源码,包括其内部状态转换机制及关键方法的实现原理。通过本文,读者可以全面理解Future在并发编程中的作用及其实现细节。
|
6月前
|
存储 缓存 安全
(八)深入并发之Runnable、Callable、FutureTask及CompletableFuture原理分析
关于Runnable、Callable接口大家可能在最开始学习Java多线程编程时,都曾学习过一个概念:在Java中创建多线程的方式有三种:继承Thread类、实现Runnable接口以及实现Callable接口。但是实则不然,真正创建多线程的方式只有一种:继承Thread类,因为只有`new Thread().start()`这种方式才能真正的映射一条OS的内核线程执行,而关于实现Runnable接口以及实现Callable接口创建出的Runnable、Callable对象在我看来只能姑且被称为“多线程任务”,因为无论是Runnable对象还是Callable对象,最终执行都要交由Threa
113 1
|
8月前
|
Java
Java并发编程:理解并使用Future和Callable接口
【2月更文挑战第25天】 在Java中,多线程编程是一个重要的概念,它允许我们同时执行多个任务。然而,有时候我们需要等待一个或多个线程完成,然后才能继续执行其他任务。这就需要使用到Future和Callable接口。本文将深入探讨这两个接口的用法,以及它们如何帮助我们更好地管理多线程。
|
8月前
|
Java
Future:异步任务结果获取
Future:异步任务结果获取
75 0
|
Java
ExecutorService、Callable、Future实现有返回结果的多线程原理解析
ExecutorService、Callable、Future实现有返回结果的多线程原理解析
85 0
|
Java
异步编程 - 04 基于JDK中的Future实现异步编程(上)_Future & FutureTask 源码解析
异步编程 - 04 基于JDK中的Future实现异步编程(上)_Future & FutureTask 源码解析
83 0
|
存储 Java
JUC基础(二)—— Future接口 及其实现
JUC基础(二)—— Future接口 及其实现
172 1
|
Java
Future 任务机制和 FutureTask 的实现原理及使用方法
Future 任务机制和 FutureTask 的实现原理及使用方法
220 0
|
Java
Java多线程 Future和FutureTask的区别
Java多线程 Future和FutureTask的区别
198 0
Java多线程 Future和FutureTask的区别