JVM 优化思路

简介: JVM 优化思路

尽量避免 Full GC


Full GC 的成本远高于 Mirror GC 因此某些情况下,尽量让对象进入新生代,虽然大部分情况下,JVM 会尝试在 Eden 区分配对象,但是由于空间紧张,新生代的数据会提前进入老年代。因此最大限度的避免新对象直接进入老年代。


大对象进入老年代


大对象出现在年轻代很可能扰乱年轻代GC,并破坏年轻代原有的对象结构。在年轻代分配大对象,很可能导致空间不足,为了足够的空间容纳大对象,JVM 不得不将年轻代中的年轻对象放到年老代。因为大对象占用空间多,很可能需要移动大量小的年轻对象进入年老代。XX:PetenureSizeThreshold 设置大对象直接进入年老代的阀值。


设置新生代进入老年代年龄


堆中的每个对象都有自己的年龄,一般情况下,年轻代的对象放在年轻代,年老对象放在年老代,为了做到这点,虚拟机为每个对象维护一个年龄。Eden 区,景观一次GC 之后移动到 Survivor 区对象年龄+1,以后每经历一次GC ,年龄+1,XX:MaxTenuringThreshold  默认值为15 ,但是不意味着每个对象都要达到这个年龄才能进入老年代。

稳定堆大小


稳定的堆大小对垃圾回收是有利的,一般是设置  -Xms 和 Xms 的大小一致,即最大堆和最小堆一致。稳定的堆空间可以减少 GC 的次数,但是同时也增加了每次 GC 的时间。有个办法,可以让堆在一个区间中震荡,在系统中不需要大内存时,压缩堆空间,可以加快单次GC 的速度。


-XX:MinHeapFreeRatio 参数用来设置堆空间最小空闲比例,默认值是 40。当堆空间的空闲内存小于这个数值时,JVM 便会扩展堆空间。-XX:MaxHeapFreeRatio 参数用来设置堆空间最大空闲比例,默认值是 70。当堆空间的空闲内存大于这个数值时,便会压缩堆空间,得到一个较小的堆。当-Xmx 和-Xms 相等时,-XX:MinHeapFreeRatio 和-XX:MaxHeapFreeRatio 两个参数无效。


增大吞吐提升系统性能


增大吞吐提升系统性能,吞吐量有限方案将会减少系统执行垃圾回收的总时间。故可以考虑提高吞吐量的并行回收器,

java –Xmx3800m –Xms3800m –Xmn2G –Xss128k –XX:+UseParallelGC 
   –XX:ParallelGC-Threads=20 –XX:+UseParallelOldGC
Xmx3800m –Xms3800m:设置 Java 堆的最大值和初始值。一般情况下,为了避免堆内存的频繁震荡,导致系统性能下降,我们的做法是设置最大堆等于最小堆。假设这里把最小堆减少为最大堆的一半,即 1900m,那么 JVM 会尽可能在 1900MB 堆空间中运行,如果这样,发生 GC 的可能性就会比较高;
-Xss128k:减少线程栈的大小,这样可以使剩余的系统内存支持更多的线程;
-Xmn2g:设置年轻代区域大小为 2GB;
–XX:+UseParallelGC:年轻代使用并行垃圾回收收集器。这是一个关注吞吐量的收集器,可以尽可能地减少 GC 时间。
–XX:ParallelGC-Threads:设置用于垃圾回收的线程数,通常情况下,可以设置和 CPU 数量相等。但在 CPU 数量比较多的情况下,设置相对较小的数值也是合理的;
–XX:+UseParallelOldGC:设置年老代使用并行回收收集器


使用非占有的垃圾回收器


为降低应用软件的垃圾回收器,回收考虑的是使用关注系统停顿的 CMS 回收器,其次为减少 FullGC 次数,应尽可能将对象停留在年轻代

java –Xmx3550m –Xms3550m –Xmn2g –Xss128k –XX:ParallelGCThreads=20
 –XX:+UseConcMarkSweepGC –XX:+UseParNewGC –XX:+SurvivorRatio=8 –XX:TargetSurvivorRatio=90
 –XX:MaxTenuringThreshold=31
–XX:ParallelGCThreads=20:设置 20 个线程进行垃圾回收;
–XX:+UseParNewGC:年轻代使用并行回收器;
–XX:+UseConcMarkSweepGC:年老代使用 CMS 收集器降低停顿;
–XX:+SurvivorRatio:设置 Eden 区和 Survivor 区的比例为 8:1。稍大的 Survivor 空间可以提高在年轻代回收生命周期较短的对象的可能性,如果 Survivor 不够大,一些短命的对象可能直接进入年老代,这对系统来说是不利的。
–XX:TargetSurvivorRatio=90:设置 Survivor 区的可使用率。这里设置为 90%,则允许 90%的 Survivor 空间被使用。默认值是 50%。故该设置提高了 Survivor 区的使用率。当存放的对象超过这个百分比,则对象会向年老代压缩。因此,这个选项更有助于将对象留在年轻代。
–XX:MaxTenuringThreshold:设置年轻对象晋升到年老代的年龄。默认值是 15 次,即对象经过 15 次 Minor GC 依然存活,则进入年老代。这里设置为 31,目的是让对象尽可能地保存在年轻代区域。


相关文章
|
11月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
298 27
|
10月前
|
存储 设计模式 监控
快速定位并优化CPU 与 JVM 内存性能瓶颈
本文介绍了 Java 应用常见的 CPU & JVM 内存热点原因及优化思路。
1032 166
|
8月前
|
监控 Java 编译器
聊聊JVM如何优化
JVM的优化是一个复杂而细致的过程,涉及内存管理、垃圾回收、即时编译、线程调度等多个方面。通过合理配置JVM参数、选择合适的垃圾回收器、优化线程调度和使用专业的监控工具,可以大幅提升Java应用的性能和稳定性。掌握这些优化技巧,能够帮助开发者在高并发、高负载的生产环境中保持系统的高效运行。
395 13
|
8月前
|
存储 设计模式 监控
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
236 0
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
|
缓存 安全 算法
Java面试题:如何通过JVM参数调整GC行为以优化应用性能?如何使用synchronized和volatile关键字解决并发问题?如何使用ConcurrentHashMap实现线程安全的缓存?
Java面试题:如何通过JVM参数调整GC行为以优化应用性能?如何使用synchronized和volatile关键字解决并发问题?如何使用ConcurrentHashMap实现线程安全的缓存?
178 0
|
11月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
12月前
|
监控 算法 Java
Java虚拟机垃圾回收机制深度剖析与优化策略####
【10月更文挑战第21天】 本文旨在深入探讨Java虚拟机(JVM)中的垃圾回收机制,揭示其工作原理、常见算法及参数调优技巧。通过案例分析,展示如何根据应用特性调整GC策略,以提升Java应用的性能和稳定性,为开发者提供实战中的优化指南。 ####
172 5
|
监控 Java 开发者
Java虚拟机(JVM)深度优化指南####
本文深入探讨了Java虚拟机(JVM)的工作原理及其性能优化策略,旨在帮助开发者通过理解JVM的内部机制来提升Java应用的运行效率。不同于传统的技术教程,本文采用案例分析与实战技巧相结合的方式,为读者揭示JVM调优的艺术。 ####
373 8
|
Arthas 监控 Java
JVM知识体系学习七:了解JVM常用命令行参数、GC日志详解、调优三大方面(JVM规划和预调优、优化JVM环境、JVM运行出现的各种问题)、Arthas
这篇文章全面介绍了JVM的命令行参数、GC日志分析以及性能调优的各个方面,包括监控工具使用和实际案例分析。
1301 3
|
存储 算法 Java
深入理解Java虚拟机(JVM)及其优化策略
【10月更文挑战第10天】深入理解Java虚拟机(JVM)及其优化策略
176 1