一文掌握Windows平台GPU深度学习开发环境部署

简介: 本文包含显卡驱动、cuda、cuDNN深度学习加速包、anaconda、tensorflow的安装以及安装源的配置,理解了本文,还可以安装pytorch等其他开发框架。

这是机器未来的第2篇文章,由机器未来原创

写在前面:

• 博客简介:专注AIoT领域,追逐未来时代的脉搏,记录路途中的技术成长!

• 专栏简介:记录博主从0到1掌握物体检测工作流的过程,具备自定义物体检测器的能力

• 面向人群:具备深度学习理论基础的学生或初级开发者

• 专栏计划:接下来会逐步发布跨入人工智能的系列博文,敬请期待

• Python零基础快速入门系列

• 快速入门Python数据科学系列

• 人工智能开发环境搭建系列

• 机器学习系列

• 物体检测快速入门系列

• 自动驾驶物体检测系列

• ......

@[toc]

1. 概述

windows GPU深度学习开发环境的安装包含显卡驱动、cuda、cuDNN深度学习加速包、anaconda、tensorflow的安装以及安装源的配置,理解了本文,还可以安装pytorch等其他开发框架。

fengmian

2. GPU工具链安装

2.1 GPU工具链的组成

Nvidia显卡、显卡驱动、cuda工具套件、cuDNN工具包四部分构成。

目前支持深度学习的显卡基本上就是N卡,不论是硬件性能,还是最新的论文支持基本上都是N卡,所以不用在这里纠结了,采购时一定要上N卡。

  • • 什么是cuda CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。注意:cuda的支持依赖显卡驱动的版本。
  • • 什么是cuDNN NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。
  • • CUDA与CUDNN的关系 CUDA看作是一个并行计算架构平台,cuDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。想要在CUDA上运行深度神经网络,就要安装cuDNN,这样才能使GPU进行深度神经网络的工作,工作速度相较CPU快很多。

2.2 安装nvidia显卡驱动

下载地址:https://www.nvidia.com/download/index.aspx?lang=en-us

2

根据提供的下载链接选择电脑对应的最新显卡驱动安装即可,这里需要记录一下显卡驱动的版本,安装cuda要用,我这台老电脑显卡驱动的文件名为425.31-notebook-win10-64bit-international-whql.exe,版本是425.31。

2.3 安装cuda-通用并行计算架构平台

  • • 查询显卡可支持的cuda版本• 显卡驱动cuda版本对照表• https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html根据上一个步骤下载的显卡驱动的版本,选择可支持的最新cuda toolkit版本,从上图中可以看到支持425.31驱动版本的cuda toolkit版本是CUDA 10.1 (10.1.105 general release, and updates) ,因此选择下载cuda10.1的版本。
  • • 安装cuda• cuda下载地址:• https://developer.nvidia.com/cuda-toolkit-archive• 下载最新版本的cuda10.14• 选择配置3• 下载完成后,文件名为cuda_10.1.243_426.00_win10.exe,双击一直下一步安装即可, 默认安装路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1。

2.4 安装cuDNN-深度学习GPU加速库

  • • cuDNN下载地址(需要注册)• https://developer.nvidia.com/rdp/cudnn-archive
  • • cuDNN版本的选择 以tensorflow常见cuda和cuDNN搭配为主。1112下载的cuda版本为10.1版本,从列表中查找支持cuda10.1的最新的cuDNN版本是cuDNN7.6.5,下载后的cuDNN文件为cudnn-10.1-windows10-x64-v7.6.5.32.zip
  • • 安装cuDNN• 将下载的cudnn-10.1-windows10-x64-v7.6.5.32.zip解压,然后将解压后cuda文件夹下的文件或文件夹,完全拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1目录下即可。6

2.5 测试GPU环境

  • • 命令提示行输入nvidia-smi查询GPU使用情况和更改GPU状态的功能
PS C:\Users\zhoushimin> nvidia-smi
Mon Apr 04 22:00:37 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 426.00       Driver Version: 426.00       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GT 650M    WDDM  | 00000000:01:00.0 N/A |                  N/A |
| N/A   36C    P0    N/A /  N/A |     40MiB /  2048MiB |     N/A      Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0                    Not Supported                                       |
+-----------------------------------------------------------------------------+

如果提示'nvidia-smi' 不是内部或外部命令,也不是可运行的程序,则可能环境变量没有配置好,需要将 C:\Program Files\NVIDIA Corporation\NVSMI 目录添加到系统环境变量中关闭命令提示符,重新打开输入 nvidia-smi 就可以看到上面的输出结果了。

7

  • • 查看cuda版本 输入nvcc -V查看cuda版本
PS C:\Users\zhoushimin> nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:12:52_Pacific_Daylight_Time_2019
Cuda compilation tools, release 10.1, V10.1.243

可以看到cuda版本为10.1

  • • 查看cuDNN版本 输入如下命令查看
type "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include\cudnn.h" | less

按回车键,直到输出结果如下:

#ifndef CUDNN_VERSION_H_
#define CUDNN_VERSION_H_
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 6
#define CUDNN_PATCHLEVEL 5
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#endif /* CUDNN_VERSION_H */

可知cuDNN的版本为7.6.5

如果找不到相关信息,可以使用如下命令测试

type "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include\cudnn_version.h" | less

3. 安装Anaconda

3.1 概述

Anaconda,中文大蟒蛇,是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。其简化了python软件包的安装,并且自动关联依赖,自动下载依赖的软件包,避免不必要的冲突,另外,anaconda最重要的功能就是创建虚拟环境,实现各种项目开发框架及版本的隔离。

3.2 下载anaconda

Anaconda的官方下载速度较慢,推荐使用清华大学的源下载,尽量选择日期较新的版本,根据操作系统版本选择对应的版本。

3.3 安装Anaconda

注意事项:不要有中文路径,安装过程无脑下一步即可。 安装完毕之后,python、pip等软件均已安装完毕。

3.4 测试Anaconda

在命令提示符输入conda -V查看conda版本,以确认conda环境是否生效。

PS C:\Users\zhoushimin> conda -V
conda 4.10.3

3.5 配置Anaconda

由于Anaconda官方服务器在国外,安装python软件包时下载速度巨慢,因此需要配置国内安装源,在这里使用清华大学的第三方源。

  • • 首先找到配置文件【.condarc】,其在C盘用户目录下,如图:9如果不存在,则直接创建即可。
  • • 打开文件后,将以下内容拷贝到文件中
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  • • 清除索引缓存 在命令行执行命令
conda clean -i
  • • 建立虚拟环境测试下载速度
conda create -n myenv numpy

测试时会发现下载包的速度杠杠的,测试完毕后,删除myenv虚拟环境

conda remove -n myenv --all
  • • 恢复官方安装源 如果使用第三方源出现问题,可以恢复官方安装源重试,恢复指令如下:
conda config --remove-key channels

4. 配置pip国内安装源

使用pip安装软件包时,有些安装包下载速度特别慢,可以选择国内的安装源。

4.1 安装源列表

以下安装源可以选择:

# 清华大学 
https://pypi.tuna.tsinghua.edu.cn/simple/
# 阿里云 
http://mirrors.aliyun.com/pypi/simple/
# 中国科技大学 
https://pypi.mirrors.ustc.edu.cn/simple

4.2 安装源的使用方式

4.2.1 临时使用

以安装tensorflow使用阿里云安装源为例,在-i后面指定安装源即可

pip install tensorflow_gpu==2.3 -i http://mirrors.aliyun.com/pypi/simple/

4.2.2 永久使用

做如下配置后,无需再使用-i选项

pip install pip -U #升级 pip 到最新的版本后进行配置:
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/

4.2.3 恢复官方安装源

如果安装源出现异常,恢复官方安装源的方式如下:

pip config unset global.index-url`

5. 安装tensorflow

5.1 创建tensorflow虚拟环境

为了隔离不同项目可能对应的不同tensorflow版本或pytorch或python版本,强烈建议使用conda创建不同的虚拟环境以实现各种不同的开发环境的隔离。

我们需要根据开发框架、cuda版本等信息综合选择合适的开发环境,强烈不建议自行搭建开发环境适配开源框架,你会怀疑人生,时间周期可能是星期级别!

5.1.1 查看开源框架支持的python和tensorflow版本

博主的需求是安装物体检测API[OBJECT DETECTION API[1]],根据项目的最低配置可以了解到支持的是tensorflow-2.2 python3.6

10

5.1.2 查看cuda可支持的tensorflow版本

- 查看cuda、tensorflow对照关系表
    - [经过测试的构建配置](https://tensorflow.google.cn/install/source?hl=zh-cn#gpu) 
    ![11](https://robot-futures-oss-zone.oss-cn-hangzhou.aliyuncs.com/imgs/11.png)

5.1.3 根据开源框架支持的tensorflow版本、cuda版本,选择tensorflow-2.2,python-3.6,根据这些信息创建虚拟环境

conda create -n [env_name] python=[python version]

详细命令如下:

conda create -n tensorflow-2.2-py36 python=3.6

输出如下:

PS C:\Users\zhoushimin> conda create -n tensorflow-2.2-py36 python=3.6
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.10.3
latest version: 4.12.0
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: D:\Tools\Anaconda3\envs\tensorflow-2.2-py36
added / updated specs:
- python=3.6
The following packages will be downloaded:
package                    |            build
---------------------------|-----------------
certifi-2021.5.30          |   py36haa95532_0         142 KB  defaults
pip-21.2.2                 |   py36haa95532_0         2.1 MB  defaults
python-3.6.13              |       h3758d61_0        17.7 MB  defaults
setuptools-58.0.4          |   py36haa95532_0         976 KB  defaults
wincertstore-0.2           |   py36h7fe50ca_0          13 KB  defaults
------------------------------------------------------------
Total:        20.9 MB
The following NEW packages will be INSTALLED:
certifi            anaconda/pkgs/main/win-64::certifi-2021.5.30-py36haa95532_0
pip                anaconda/pkgs/main/win-64::pip-21.2.2-py36haa95532_0
python             anaconda/pkgs/main/win-64::python-3.6.13-h3758d61_0
setuptools         anaconda/pkgs/main/win-64::setuptools-58.0.4-py36haa95532_0
sqlite             anaconda/pkgs/main/win-64::sqlite-3.38.2-h2bbff1b_0
vc                 anaconda/pkgs/main/win-64::vc-14.2-h21ff451_1
vs2015_runtime     anaconda/pkgs/main/win-64::vs2015_runtime-14.27.29016-h5e58377_2
wheel              anaconda/pkgs/main/noarch::wheel-0.37.1-pyhd3eb1b0_0
wincertstore       anaconda/pkgs/main/win-64::wincertstore-0.2-py36h7fe50ca_0
Proceed ([y]/n)? y

等待执行完毕。

5.2 切换至虚拟环境,安装tensorflow

  • • 切换至虚拟环境
conda activate tensorflow-2.2-py36
  • • 安装tensorflow
pip install tensorflow==2.2.0
  • • 安装完毕后的输出如下
Successfully built termcolor
Installing collected packages: urllib3, pyasn1, idna, charset-normalizer, zipp, typing-extensions, six, rsa, requests, pyasn1-modules, oauthlib, cachetools, requests-oauthlib, importlib-metadata, google-auth, dataclasses, werkzeug, tensorboard-plugin-wit, protobuf, numpy, markdown, grpcio, google-auth-oauthlib, absl-py, wrapt, termcolor, tensorflow-estimator, tensorboard, scipy, opt-einsum, keras-preprocessing, h5py, google-pasta, gast, astunparse, tensorflow
Successfully installed absl-py-1.0.0 astunparse-1.6.3 cachetools-4.2.4 charset-normalizer-2.0.12 dataclasses-0.8 gast-0.3.3 google-auth-1.35.0 google-auth-oauthlib-0.4.6 google-pasta-0.2.0 grpcio-1.44.0 h5py-2.10.0 idna-3.3 importlib-metadata-4.8.3 keras-preprocessing-1.1.2 markdown-3.3.6 numpy-1.19.5 oauthlib-3.2.0 opt-einsum-3.3.0 protobuf-3.19.4 pyasn1-0.4.8 pyasn1-modules-0.2.8 requests-2.27.1 requests-oauthlib-1.3.1 rsa-4.8 scipy-1.4.1 six-1.16.0 tensorboard-2.2.2 tensorboard-plugin-wit-1.8.1 tensorflow-2.2.0 tensorflow-estimator-2.2.0 termcolor-1.1.0 typing-extensions-4.1.1 urllib3-1.26.9 werkzeug-2.0.3 wrapt-1.14.0 zipp-3.6.0

5.3 测试tensorflow gpu环境

创建gpu_tf_test.py,拷贝如下代码:

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD
import time 
# config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# session = tf.Session(config=config)
# 启用GPU
from tensorflow.compat.v1 import ConfigProto# tf 2.x的写法
config =ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction=0.9
tf.compat.v1.Session(config=config)
# 构建数据集
X_data = np.linspace(-1,1,1000)[:, np.newaxis]
noise = np.random.normal(0,0.05,X_data.shape)
y_data = np.square(X_data) + noise + 0.5
print("shape")
print(X_data.shape)
# 构建神经网络
model = Sequential()
model.add(Dense(10, input_shape=(1,), kernel_initializer='normal', activation='relu'))
#model.add(Dense(5, activation='relu'))
# vs 分类为softmax激活
model.add(Dense(10000, kernel_initializer='normal'))
model.add(Dense(10000, kernel_initializer='normal'))
model.add(Dense(100, kernel_initializer='normal'))
model.add(Dense(1, kernel_initializer='normal'))
#sgd = SGD(lr=0.001)
model.compile(loss='mean_squared_error', optimizer="sgd") #adam
# 训练 epoch = 10, 30, 50, view the results
start = time.time()
model.fit(X_data, y_data, epochs=50, batch_size=16, verbose=1)
end = time.time()
# 在原数据上预测
y_predict=model.predict(X_data)
#print(y_predict)
model.summary()
print("training time {}".format(end - start))

执行测试

# 切换至虚拟环境
conda activate tensorflow-2.2-py36
# 执行测试
python gpu_tf_test.py

输出如下:

(tensorflow-2.2-py36) C:\Users\zhoushimin\Desktop>python gpu_test.py
2022-04-05 00:24:35.790114: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-04-05 00:24:39.180693: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x211ab3407a0 initialized for platform Host (this does not guarantee 
that XLA will be used). Devices:
2022-04-05 00:24:39.181152: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
2022-04-05 00:24:39.185023: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2022-04-05 00:24:39.957288: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: GeForce GT 650M computeCapability: 3.0
coreClock: 0.835GHz coreCount: 2 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 59.60GiB/s
2022-04-05 00:24:39.958038: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-04-05 00:24:39.965471: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2022-04-05 00:24:39.972214: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2022-04-05 00:24:39.975560: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2022-04-05 00:24:39.985029: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2022-04-05 00:24:39.989813: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2022-04-05 00:24:40.014427: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2022-04-05 00:24:40.016214: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1657] Ignoring visible gpu device (device: 0, name: GeForce GT 650M, pci bus id: 0000:01:00.0, compute capability: 3.0) with Cuda compute capability 3.0. The minimum required Cuda capability is 3.5.
2022-04-05 00:24:40.063972: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-04-05 00:24:40.064381: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108]      0 
2022-04-05 00:24:40.064707: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0:   N
2022-04-05 00:24:40.068691: I tensorflow/compiler/xla/service/platform_util.cc:139] StreamExecutor cuda device (0) is of insufficient compute capability: 3.5 required, device is 3.0
2022-04-05 00:24:40.069704: I tensorflow/compiler/jit/xla_gpu_device.cc:161] Ignoring visible XLA_GPU_JIT device. Device number is 0, reason: Internal: no supported devices found for platform CUDA
shape
(1000, 1)
2022-04-05 00:24:40.099506: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: GeForce GT 650M computeCapability: 3.0
coreClock: 0.835GHz coreCount: 2 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 59.60GiB/s
2022-04-05 00:24:40.100197: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2022-04-05 00:24:40.100541: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2022-04-05 00:24:40.100821: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2022-04-05 00:24:40.101140: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2022-04-05 00:24:40.101432: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2022-04-05 00:24:40.101674: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2022-04-05 00:24:40.101915: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2022-04-05 00:24:40.103257: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1657] Ignoring visible gpu device (device: 0, name: GeForce GT 650M, pci bus id: 0000:01:00.0, compute capability: 3.0) with Cuda compute capability 3.0. The minimum required Cuda capability is 3.5.
2022-04-05 00:24:40.104045: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-04-05 00:24:40.104239: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108]
2022-04-05 00:24:40.139180: W tensorflow/core/framework/cpu_allocator_impl.cc:81] Allocation of 400000000 exceeds 10% of free system memory.
2022-04-05 00:24:41.717374: W tensorflow/core/framework/cpu_allocator_impl.cc:81] Allocation of 400000000 exceeds 10% of free system memory.
2022-04-05 00:24:41.799759: W tensorflow/core/framework/cpu_allocator_impl.cc:81] Allocation of 400000000 exceeds 10% of free system memory.
Epoch 1/50
2022-04-05 00:24:42.666531: W tensorflow/core/framework/cpu_allocator_impl.cc:81] Allocation of 400000000 exceeds 10% of free system memory.
2022-04-05 00:24:42.841301: W tensorflow/core/framework/cpu_allocator_impl.cc:81] Allocation of 400000000 exceeds 10% of free system memory.
63/63 [==============================] - 36s 567ms/step - loss: 0.2708
Epoch 2/50
63/63 [==============================] - 35s 559ms/step - loss: 0.0703
Epoch 3/50
63/63 [==============================] - 39s 614ms/step - loss: 0.0350
Epoch 4/50
63/63 [==============================] - 41s 643ms/step - loss: 0.0140
Epoch 5/50
63/63 [==============================] - 41s 650ms/step - loss: 0.0144
Epoch 6/50
30/63 [=============>................] - ETA: 21s - loss: 0.0091

从日志中可以看到显卡GeForce GT 650M已经加载成功了,cuda也加载成功了,因为GPU性能较弱,仅3.0,不满足最小要求3.5,直接使用的cpu在运行。

6. 总结

总体来说,深度学习安装环境的安装还是比较麻烦的,涉及到

  • • 显卡支持的cuda版本确定• 依赖新卡驱动版本号
  • • cuDNN版本的确认• 依赖cuda版本和开发框架匹配的cuDNN版本
  • • python版本的确认等• 依赖开源项目支持的版本

一般来说,一个项目一个环境,避免环境冲突。一个项目一个环境可以通过anaconda来实现,也可以使用docker来实现隔离。有一些框架在windows平台支持不好,例如目标检测框架MMDetection,尽可能还是使用linux环境来做开发。

以上是我的学习总结,有问题欢迎交流。

参考链接:

推荐阅读:

  • 物体检测快速入门系列(2)-Windows部署GPU深度学习开发环境
  • 物体检测快速入门系列(3)-Windows部署Docker GPU深度学习开发环境
  • 物体检测快速入门系列(4)-TensorFlow 2.x Object Detection API快速安装手册
  • 物体检测快速入门系列(1)-基于Tensorflow2.x Object Detection API构建自定义物体检测器


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1天前
|
Ubuntu 网络协议 Linux
快速部署WSL(Windows Subsystem for Linux)
WSL提供了一种轻量级的方法,使开发者能够在Windows上无缝运行Linux环境。通过本文介绍的步骤,可以快速安装、配置和使用WSL,以满足开发和测试的需求。
20 8
|
1月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
50 5
|
3月前
|
Windows
Windows操作系统部署安装Kerberos客户端
详细介绍了在Windows操作系统上部署安装Kerberos客户端的完整过程,包括下载安装包、安装步骤、自定义安装路径、修改环境变量、配置hosts文件和Kerberos配置文件,以及安装后的验证步骤。
426 3
Windows操作系统部署安装Kerberos客户端
|
3月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
340 2
|
4月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
65 0
|
4月前
|
开发框架 JavaScript .NET
【Azure 应用服务】Azure Mobile App (NodeJS) 的服务端部署在App Service for Windows中出现404 Not Found
【Azure 应用服务】Azure Mobile App (NodeJS) 的服务端部署在App Service for Windows中出现404 Not Found
|
4月前
|
存储 安全 网络安全
【Azure 环境】使用Azure中的App Service部署Web应用,以Windows为主机系统是否可以启动防病毒,防恶意软件服务呢(Microsoft Antimalware)?
【Azure 环境】使用Azure中的App Service部署Web应用,以Windows为主机系统是否可以启动防病毒,防恶意软件服务呢(Microsoft Antimalware)?
|
4月前
|
Python Windows
【Azure 应用服务】App Service For Windows 环境中部署Python站点后,如何继续访问静态资源文件呢(Serving Static Files)?
【Azure 应用服务】App Service For Windows 环境中部署Python站点后,如何继续访问静态资源文件呢(Serving Static Files)?
|
4月前
|
负载均衡 网络协议 安全
【Azure 应用服务】Azure Web App的服务(基于Windows 操作系统部署)在被安全漏洞扫描时发现了TCP timestamps漏洞
【Azure 应用服务】Azure Web App的服务(基于Windows 操作系统部署)在被安全漏洞扫描时发现了TCP timestamps漏洞
|
17天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
77 5