测试利器 | 一款开源的Diffy自动化测试框架:超详细实战教程讲解

简介: 测试利器 | 一款开源的Diffy自动化测试框架:超详细实战教程讲解

1. 前言


软件测试是软件开发生命周期一个十分重要的环节,测试工作开展的好坏,很大程度上决定了产品质量的好坏,但软件产品随着版本的持续迭代,功能日益增多,系统愈加复杂,而从质量保障的角度,除了要保障好每次新增、优化的产品质量外,还需要确认新增或修改的功能不影响之前已存在的功能。若要进行产品功能全量回归,这个测试的工作量将会非常巨大。同时因为是回归,可能几百甚至上千用例中才会发现一个问题,甚至一个问题也没有,测试投入工作的时间与最终的收益不成比例。

因此如何在有限的时间、人力投入下,有效、高效的保证产品回归测试的质量,也一度成为了行业老司机以及团队管理者头疼的问题!

微信图片_20220524161220.png

而今天的主角Diffy则为上述问题提供了较好的解决方案。它基于稳定版本和它副本的输出,对候选版本的输出进行严格对比,以检查候选版本是否正确,大大降低了回归工作量

接下来,让我们详细了解一下Diffy的工作原理,以及结合实战演练带大家感受一下它的魅力。

2. 关于Diffy


关于Diffy,公号此前发表过一篇文章: 推荐一款Diffy:Twitter的开源自动化测试工具 有过详细介绍,如果之前还不了解的读者,可详细阅读一下。

简单来理解,Diffy是一个开源的自动化测试工具,是一种自动Diff测试技术。它能够自动检测基于Apache Thrift或者基于HTTP的服务。通过同时运行新/老代码,对比运行结果,发现潜在bug。并且使用Diffy,只需要进行简单的配置,而不需要再编写测试代码。

3. Diffy工作原理


在整个测试开展过程中,Diffy需要部署三个版本的系统,以实现它的噪声过滤和对比功能,它们分别是:

  • 候选版本(candidate):该版本为待测版本,有着最新待测代码。
  • 稳定版本(primary):该版本通常是已经上线版本,或者是已知功能正常的版本。
  • 稳定版本副本(secondary):该版本是稳定版本的副本,和稳定版本运行相同的代码,主要用于排除噪声。

Diffy主要职责充当了一个前置代理服务的角色,它能够将来源请求分发到不同版本的系统中去,通过对各个版本系统的输出进行对比,做出最终的结论。

Diffy整个工作原理流程图如下:微信图片_20220524161303.png

说明:

  • diffy本身作为一个代理服务(proxy),需要人为构造或引流http请求,发到proxy代理服务中。
  • 当proxy代理服务接收到请求后,会把请求分发到三个地方:被测服务,通常称之为侯选版本(candidate)、稳定版本(primary)服务、稳定版本副本(secondary)服务;
  • 接着,侯选版本服务与稳定版本服务的返回结果进行diff,生成原始diff结果(raw differences),即原始区别;
  • 其次,稳定版本与稳定版本副本的返回结果进行diff,生成噪声diff差异值结果(non-deterministic noise),即噪声,通过对这些差异值做减法来消除噪声。
  • 最后,通过比对原始的diff结果与消除噪声后的结果,得到最终的diff结果通过去噪声,得到最终过滤后的diff结果(filtered differences);

最终过滤后的对比结果会在平台提供的html页面中展示出来。

为了方便大家更好的理解上述工作流程,在网上找了一张图,标注了一下示例(本图来源于网络):

微信图片_20220524161331.png

其中:

  • 原始区别为候选版本和稳定版本之间输出的区别,其中可能会包含上述的噪声。
  • 噪声从稳定版本和其副本中获得,如果两个运行相同代码的系统输入相同输出却不同,则Diffy会认为这是开发人员不需要关心的噪声。

基于上述两个区别集合,Diffy可以识别出候选版本和稳定版本真实的区别,这些区别很有可能就是一个缺陷。

当然,对于一个概率性出现随机值,仅仅一次请求的结论可能是不准确的。例如对于一个50%概率出现true或者false的布尔值,则有50%的概率会出现候选版本和稳定版本的不同,同时又会有50%的概率出现稳定版本和其副本出现不同(即将这个值认定为噪声),最终会有25%的概率认为这是一个缺陷。因为此时稳定版本和其副本值相同,候选版本和稳定版本值不同。因此,Diffy还会聚合原始区别和噪声,当发现二者出现的概率类似的时候,会认定之前识别出来的缺陷属于误报。

4. Diffy编译、部署


Diffy是Twitter使用scala语言开发的项目,并且在GitHub持续更新中,关于diffy的源码,github上对应有两个版本:

1. twitter/diffy:

https://github.com/twitter/diffy

2. opendiffy/diffy:

https://github.com/opendiffy/diffy

按照官方的说明,建议优先使用opendiffy/diffy进行编译部署。

由于我们最终是需要用到diffy编译成功生成的jar包(实际上diffy平台使用的是scala语言),此时运行环境需要安装JDK,这里建议安装Java 8,编译环境安装好之后,克隆diffy源码并进行sbt编译构建。

git clone https://github.com/opendiffy/diffy
cd diffy
./sbt assembly

需要注意的是./sbt assembly这个编译下载过程十分漫长,有条件的同学建议挂个代理。

微信图片_20220524161420.png

编译好之后,生成的Jar包位置:diffy/target/scala-xx/diffy-server.jar(diffy根目录的相对路径下)

除了利用Github的源码进行搭建外,还有两种方式也可以搭建Diffy。其一是直接利用jar包,但该方法或者使用docker的Diffy容器https://hub.docker.com/r/diffy/diffy进行搭建,在此不一一赘述。

5. Diffy常用命令参数


编译生成好jar包后,直接通过java命令启动diffy服务即可,其中,运行Diffy服务的常用参数如下:

参数配置 含义
candidate='PC1:8888' 待上线版本部署地址,即候选版本
master.primary='PC2:8888' 已上线版本地址1,即稳定版本
master.secondary='PC3: 8888' 已上线版本地址2,即稳定版本副本
service.protocol='http' http协议或https
serviceName='Test Service' 服务名称
proxy.port=:9990 Diffy代理端口,所以请求都应从这个端口访问
admin.port=:9991 通过http://PC0:8881/admin可查看请求状况
http.port=:9999 查看界面,在这里可以比较差异
responseMode=primary 代理服务器是否返回结果,默认(empty)无返回,可指定primary返回线上版本,secondary(同线上版本,用于噪音消除),candidate(待测试版本)
allowHttpSideEffects=true Diffy考虑到安全性,POST,PUT,DELETE请求默认忽略,因此该参数为true则表示这三种类型请求仍能正常代理发送
excludeHttpHeadersComparison=false 是否排除header的差异,不同服务器,cookie,nginx版本可能有所差异,设置为true可以忽略这
notifications.targetEmail (对差异发送到指定邮箱)

例如:

java -jar diffy-server.jar \
       -candidate='127.0.0.1:80' \
       -master.primary='127.0.0.1:81' \
       -master.secondary='127.0.0.1:82' \
       -service.protocol='http' \
       -serviceName='My Diffy Service' \
       -proxy.port=:8880 \
       -admin.port=:8881 \
       -http.port=:8888 \
       -allowHttpSideEffects=true \
       -excludeHttpHeadersComparison=false \
       -notifications.targetEmail=tester@emal.com

6. Diffy项目实战演练


安装和使用Diffy的一般步骤如下:

  • 安装Diffy;
  • 启动候选服务、稳定服务和稳定服务副本;
  • 运行Diffy;
  • 发送请求&查看结果;

接下来,通过一则简单的实战项目示例,为大家演示整个diffy的使用过程。

本文示例项目:是基于Django搭建的一套简易型REST API服务。关于如何通过Django来实现REST API服务过程可参考:Python利用Django 构建Rest Api: 快速入门教程

假设按照上述教程,你已经成功的搭建好了REST API服务,项目名为:blog_project,接下来,继续往下操作:

1. 部署primary(稳定版本)

由于本文不区分线上正式环境和测试环境,皆通过本地环境演示。(读者在实际生产&测试环境操作时,除了环境差异外,操作思路皆一样)

将示例项目blog_project代码拷贝一份到其它目录(为了和测试版本区分开来),激活虚拟环境,启动Django服务,端口设置为8001,此服务作为稳定版本服务,命令如下:

source env/bin/activate
cd blog_project
python manage.py runserver 8001

2. 部署secondary(稳定版本副本)

同上一步操作一样,激活虚拟环境,启动Django服务,端口设置为8002,此服务作为稳定版副本服务,命令如下:

source env/bin/activate
cd blog_project
python manage.py runserver 8002

3. 验证primary和secondary(稳定版本服务)此步非必须,但为了让大家直观能和测试版本的服务区分开来,我们先验证一下,当前稳定版本服务的接口输出信息,比如:

http http://127.0.0.1:8001/api/

输出信息:微信图片_20220524161458.png

从上述输出信息中,我们可以知道访问api/接口时,会输出两条信息,并且每条记录,分别对应有content,id,title,updated_at,create_at几个字段。

接着验证secondary副本服务:

http http://127.0.0.1:8002/api/

微信图片_20220524161540.png

可以看出,secondary副本服务和primary稳定版本服务输出结果是一样的。

4. 部署candidate(测试版本)

接下来,我们开始部署测试版本服务,为了和稳定版本服务有所不同,我们在测试版本中,给api接口请求记录中,增加一个data字段。(实际工作中,也经常会面临接口字段的增、删、改)

1、修改blog_api/models.py文件,在原来的数据模型中,增加一个data字段:

from django.db import models
# Create your models here.
from django.db import models
class Post(models.Model):
    title = models.CharField(max_length=50)
    data = models.CharField(max_length=250,default='--')
    content = models.TextField()
    created_at = models.DateTimeField(auto_now_add=True)
    updated_at = models.DateTimeField(auto_now=True)
    def __str__(self):
        return self.title

2、修改serializers.py文件,在fields中增加返回data字段。

class PostSerializer(serializers.ModelSerializer):
    class Meta:
        fields = ('id', 'title', 'content', 'data','created_at', 'updated_at',)
        model = models.Post

3、生成迁移文件、同步执行数据库变更

python manage.py makemigrations
python manage.py migrate

4、启动服务,默认端口为8000,作为待测版本服务。

python manage.py runserver

5. 启动diffy服务由于演示需要,直接在本地启动diffy服务即可,命令如下:

java -jar diffy-server.jar
    -candidate=localhost:8000
    -master.primary=localhost:8001
    -master.secondary=localhost:8002
    -service.protocol=http
    serviceName=My-Service
    -proxy.port=:8880
    -admin.port=:8881
    -http.port=:8888
    -rootUrl='localhost:8888'
    -allowHttpSideEffects=true

从上述启动命令中,可知:

  • diffy代理接口为8880,后续测试的所以请求都应从这个端口访问
  • 查看请求:通过http://localhost:8881/admin (admin.port)可以查看请求状况
  • 查看差异:通过http://localhost:8888 (http.port)比较差异

在命令行中,输入如下命令,运行测试:

http http://127.0.0.1:8880/api/

命令经执行后,经diffy代理转发到稳定版本服务(端口8001)、稳定版本副本服务(端口8002)、测试版本服务(端口8000)中。

微信图片_20220524161621.png

访问http://localhost:8888,查看diff请求对比界面,功能说明如下图所示:微信图片_20220524161647.png

通常接口差异主要分为以下几类:

  • 每次调用本身返回值就不同,如updatetime(可忽略);
  • 测试环境和线上环境数据不一致(可忽略);
  • 实时数据接口、动态变化数据(可忽略);
  • 软件缺陷或非预期修改。

对于可忽略的差异,可点击按钮忽略。

访问http://localhost:8881/admin,查看diff后台界面,功能说明如下图所示:微信图片_20220524161713.png

连续运行几次测试请求,访问http://localhost:8888,对比请求差异,如图所示。微信图片_20220524161743.png

从上图中,可知,已经成功diffy出在测试版本中,新增了一个data字段。

6. 修改测试版本服务

继续在测试版本服务上面修改以验证diffy的有效性,比如修改api/接口返回的记录内容。

1、访问http://localhost:8000/admin,访问测试版本服务后台,修改其中一条记录,比如:微信图片_20220524161810.png

更新date中的内容,并点击保存。此时需要注意,当点击保存后,此时记录的updated_at字段值会被修改。

2、再次运行diffy代理请求。

http http://127.0.0.1:8880/api/

3、此时再观察http://localhost:8888界面,微信图片_20220524161916.png可以看到,在diffy界面中,检查出了三个差异:返回的内容长度Content-lengthdataupdated_at

当然,实际业务中,Content-lengthupdated_at这类型的差异可被忽略掉。

通过结合接口返回详情功能,可查看到稳定版本和测试版本返回响应的差异处:微信图片_20220524161944.png

7. 小结


最后,总结几点建议:

  1. 在使用Diffy时,需要通过Diffy代理服务发送待测请求,虽然我们可以通过postman、curl等工具一个个发送,实践时,可通过Charles工具记录所有线上待测请求,然后利用Charles的Rewrite功能将修改成Diffy的代理服务器地址,重写请求,再重发。
  2. 除上借助Charles代理工具外,在实际应用时,也可借助线上引流工具(比如通过goreplay等引流工具)进行请求流量回放,或通过已有的接口自动化测试用例触发请求。
  3. 在使用Diffy时,可以看到有些差异是请求头部导致的,并不是我们想要发现的内容上的差异,如cookie的差异,nginx版本的差别,不同服务器等等,可以在命令行中加入配置可忽略头部差异:excludeHttpHeadersComparison=true


目录
相关文章
|
2月前
|
人工智能 搜索推荐 数据管理
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
154 11
|
2月前
|
人工智能 JavaScript 前端开发
自动化测试框架的演进与实践###
本文深入探讨了自动化测试框架从诞生至今的发展历程,重点分析了当前主流框架的优势与局限性,并结合实际案例,阐述了如何根据项目需求选择合适的自动化测试策略。文章还展望了未来自动化测试领域的技术趋势,为读者提供了宝贵的实践经验和前瞻性思考。 ###
|
1月前
|
存储 测试技术 API
pytest接口自动化测试框架搭建
通过上述步骤,我们成功搭建了一个基于 `pytest`的接口自动化测试框架。这个框架具备良好的扩展性和可维护性,能够高效地管理和执行API测试。通过封装HTTP请求逻辑、使用 `conftest.py`定义共享资源和前置条件,并利用 `pytest.ini`进行配置管理,可以大幅提高测试的自动化程度和执行效率。希望本文能为您的测试工作提供实用的指导和帮助。
111 15
|
2月前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
521 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
2月前
|
Java 测试技术 API
探索软件测试中的自动化测试框架
本文深入探讨了自动化测试在软件开发中的重要性,并详细介绍了几种流行的自动化测试框架。通过比较它们的优缺点和适用场景,旨在为读者提供选择合适自动化测试工具的参考依据。
|
2月前
|
前端开发 JavaScript 测试技术
前端自动化测试
前端自动化测试是通过使用工具和脚本自动执行测试用例的过程,旨在提高测试效率、减少人为错误,并确保Web应用的功能在不同环境和设备上的一致性与稳定性。
|
2月前
|
jenkins 测试技术 持续交付
自动化测试框架的搭建与实践
在软件开发领域,自动化测试是提升开发效率、确保软件质量的关键手段。本文将引导读者理解自动化测试的重要性,并介绍如何搭建一个基本的自动化测试框架。通过具体示例和步骤,我们将探索如何有效实施自动化测试策略,以实现软件开发流程的优化。
114 7
|
2月前
|
监控 测试技术 定位技术
探索软件测试中的自动化测试框架选择与实施###
本文不概述传统意义上的摘要内容,而是直接以一段对话形式引入,旨在激发读者兴趣。想象一下,你是一名勇敢的探险家,面前摆满了各式各样的自动化测试工具地图,每张地图都指向未知的宝藏——高效、精准的软件测试领域。我们将一起踏上这段旅程,探讨如何根据项目特性选择合适的自动化测试框架,并分享实施过程中的关键步骤与避坑指南。 ###
63 4
|
2月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
2月前
|
测试技术 持续交付 数据安全/隐私保护
软件测试的艺术与科学:探索自动化测试框架
在软件开发的世界中,测试是确保产品质量的关键环节。本文将深入探讨自动化测试框架的重要性和实现方法,旨在为读者揭示如何通过自动化测试提升软件测试效率和准确性。我们将从测试的基本概念出发,逐步引导读者了解自动化测试框架的设计和实施过程,以及如何选择合适的工具来支持测试活动。文章不仅提供理论知识,还将分享实用的代码示例,帮助读者将理论应用于实践。无论你是测试新手还是经验丰富的开发者,这篇文章都将为你打开一扇通往更高效、更可靠软件测试的大门。
54 1