趣味Python — 不到20行代码制作一个 “手绘风” 视频

简介: 本期推文与计算机视觉相关,用不到 20 行Python代码将一张图片由自然风转化为手绘风,期间未对图片进行任何预处理、后处理;代码中只借助了两个常见库,核心计算由 Numpy 负责 ,Pillow 负责图片读写

本期推文与计算机视觉相关,用不到 20 行Python代码将一张图片由自然风转化为手绘风,期间未对图片进行任何预处理、后处理;代码中只借助了两个常见库,核心计算由 Numpy 负责 ,Pillow 负责图片读写


在正文开始之前,先看一下最初效果,下面是单张图片转换前后对比

图一

图二

图三

为了增加趣味性,后面将这段代码应用到一个视频中,加上一个背景音乐,新鲜的 “手绘风视频” 出炉


“手绘风”实现步骤

讲解之前,需要了解手绘图像的三个主要特点:

  • 图片需为灰度图,是单通道的;
  • 边缘部分线条较重涂抹为黑色,相同或相近像素值转换后趋于白色;
  • 在光源效果的加持下,灰度变化可模拟人类视觉的远近效果


读取图片,转化为数组

因为后面要用到像素计算,为了方便,事先将读取后的图片转化为数组

a = np.asarray(Image.open("Annie1.jpg").convert('L')).astype('float')


计算 x,y,z 轴梯度值,并归一化

刚才提到手绘照片的一个特点,就是 手绘照片对边缘区域更加侧重,定位图片边缘部分,最有效方式就是计算梯度,用灰度变化来模拟图片远近效果,depth 表示预设深度,z 轴默认梯度为 1


depth = 10.  # (0-100)
grad = np.gradient(a)  # 取图像灰度的梯度值
grad_x, grad_y = grad  # 分别取横纵图像梯度值
grad_x = grad_x * depth / 100.
grad_y = grad_y * depth / 100.


对梯度值完成归一化操作

A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.)
uni_x = grad_x / A
uni_y = grad_y / A
uni_z = 1. / A


加入光源效果

手绘风图片除了计算梯度值之外,还需要考虑光源影响;根据光源入射的角度不同最有对x,y,z 各轴上的梯度值有不同程度的影响,添加一个模拟光源,放置在斜上方,与 x , y 分别形成两个夹角



并且这两个夹角是通过实验得到是已知的,然后根据正弦余弦函数计算出最终新的像素值

 
         
vec_el = np.pi / 2.2  # 光源的俯视角度,弧度值
vec_az = np.pi / 4.  # 光源的方位角度,弧度值
dx = np.cos(vec_el) * np.cos(vec_az)  # 光源对 x轴的影响
dy = np.cos(vec_el) * np.sin(vec_az)  # 光源对 y轴的影响
dz = np.sin(vec_el)  # 光源对z 轴的影响
b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)  # 光源归一化,8 255
b = b.clip(0, 255)# 对像素值低于0,高于255部分做截断处理

导出图片,并保存

im.save("Annie_shouhui.jpg")


以下是该步骤涉及到的的全部代码

from PIL import Image
import numpy as np
a = np.asarray(Image.open("Annie1.jpg").convert('L')).astype('float')
depth = 10.  # (0-100)
grad = np.gradient(a)  # 取图像灰度的梯度值
grad_x, grad_y = grad  # 分别取横纵图像梯度值
grad_x = grad_x * depth / 100.
grad_y = grad_y * depth / 100.
A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.)
uni_x = grad_x / A
uni_y = grad_y / A
uni_z = 1. / A
vec_el = np.pi / 2.2  # 光源的俯视角度,弧度值
vec_az = np.pi / 4.  # 光源的方位角度,弧度值
dx = np.cos(vec_el) * np.cos(vec_az)  # 光源对 x轴的影响
dy = np.cos(vec_el) * np.sin(vec_az)  # 光源对 y轴的影响
dz = np.sin(vec_el)  # 光源对z 轴的影响
b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)  # 光源归一化
b = b.clip(0, 255)
im = Image.fromarray(b.astype('uint8'))  # 重构图像
im.save("Annie_shouhui.jpg")

制作手绘风视频

图片转化后的效果虽然也不错,但图片毕竟是静态的,人作为视觉动物,如果能做成动态的那再好不过了,知道上面的方法之后,只需对视频再加上一个拆帧合并操作,就能制作一个手绘风 视频效果


you-get 下载视频


这里我用 you-get 命令在 B 站上找了一个视频,下载了下来,

you-get --format=dash-flv -o ./ https://www.bilibili.com/video/BV1tT4y1j7a9?from=search&8014393453748720686


下载完之后,用 OpenCV2 对视频进行切帧操作,切帧同时对图片进行转化,写出到本地视频文件中

 vc = cv2.VideoCapture(video_path)
    c = 0
    if vc.isOpened():
        rval,frame = vc.read()
        height,width = frame.shape[0],frame.shape[1]
        print(height, width)
    else:
        rval = False
        height,width = 960,1200
    # jpg_list = [os.path.join('Pic_Directory/',i) for i in os.listdir('Pic_Directory') if i.endswith('.jpg')]
    fps = 24 # 视频帧率
    video_path1 = './text.mp4'
    video_writer = cv2.VideoWriter(video_path1,cv2.VideoWriter_fourcc(*'mp4v'),fps,(width,height))
    while rval:
        rval,frame = vc.read()# 读取视频帧
        img = coonvert_jpg(Image.fromarray(frame))
        frame_converted = np.array(img)
        # 转化为三通道
        image = np.expand_dims(frame_converted,axis = 2)
        result_arr = np.concatenate((image,image,image),axis = -1)
        video_writer.write(result_arr)
        print('Sucessfully Conveted---------{}'.format(c))
        c = c + 1
        if c >= 3000:
            break
    video_writer.release()

在图片序列提取时,需要注意一点,因为转化后的图片是单通道的,直接借助 OpenCV 生成视频序列是无法播放的,需增加一个步骤单通道转化为三通道!


 # 转化为三通道
 image = np.expand_dims(frame_converted,axis = 2)
 result_arr = np.concatenate((image,image,image),axis = -1)


想让生成的视频更有感觉的话可以添加一个背影音乐,借助剪辑软件、Python 都可,这里建议最好用剪辑软件,原因是 Python 自定义增加音频效果并不理想,添加音乐时需要有实时反馈, 而 Python 暂时无法满足此要求


相关文章
|
29天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
35 6
|
2月前
|
存储 缓存 测试技术
Python中的装饰器:功能增强与代码复用的利器
在Python编程中,装饰器是一种强大而灵活的工具,它允许开发者以简洁优雅的方式增强函数或方法的功能。本文将深入探讨装饰器的定义、工作原理、应用场景以及如何自定义装饰器。通过实例演示,我们将展示装饰器如何在不修改原有代码的基础上添加新的行为,从而提高代码的可读性、可维护性和复用性。此外,我们还将讨论装饰器在实际应用中的一些最佳实践和潜在陷阱。
|
2天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
46 33
|
3天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
25 10
|
2月前
|
人工智能 数据挖掘 Python
Python编程基础:从零开始的代码旅程
【10月更文挑战第41天】在这篇文章中,我们将一起探索Python编程的世界。无论你是编程新手还是希望复习基础知识,本文都将是你的理想之选。我们将从最基础的语法讲起,逐步深入到更复杂的主题。文章将通过实例和练习,让你在实践中学习和理解Python编程。让我们一起开启这段代码之旅吧!
|
22天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
62 8
|
30天前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
50 11
|
1月前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
40 11
|
27天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
28天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
48 6