import torch import torch.nn as nn import torch.optim as optim torch.manual_seed(1) # some helper functions def argmax(vec): # return the argmax as a python int # 第1维度上最大值的下标 # input: tensor([[2,3,4]]) # output: 2 _, idx = torch.max(vec,1) return idx.item() def prepare_sequence(seq,to_ix): # 文本序列转化为index的序列形式 idxs = [to_ix[w] for w in seq] return torch.tensor(idxs, dtype=torch.long) def log_sum_exp(vec): #compute log sum exp in a numerically stable way for the forward algorithm # 用数值稳定的方法计算正演算法的对数和exp # input: tensor([[2,3,4]]) # max_score_broadcast: tensor([[4,4,4]]) max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1,-1).expand(1,vec.size()[1]) return max_score+torch.log(torch.sum(torch.exp(vec-max_score_broadcast))) START_TAG = "<s>" END_TAG = "<e>" # create model class BiLSTM_CRF(nn.Module): def __init__(self,vocab_size, tag2ix, embedding_dim, hidden_dim): super(BiLSTM_CRF,self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.tag2ix = tag2ix self.tagset_size = len(tag2ix) self.word_embeds = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim//2, num_layers=1, bidirectional=True) # maps output of lstm to tog space self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) # matrix of transition parameters # entry i, j is the score of transitioning to i from j # tag间的转移矩阵,是CRF层的参数 self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size)) # these two statements enforce the constraint that we never transfer to the start tag # and we never transfer from the stop tag self.transitions.data[tag2ix[START_TAG], :] = -10000 self.transitions.data[:, tag2ix[END_TAG]] = -10000 self.hidden = self.init_hidden() def init_hidden(self): return (torch.randn(2, 1,self.hidden_dim//2), torch.randn(2, 1,self.hidden_dim//2)) def _forward_alg(self, feats): # to compute partition function # 求归一化项的值,应用动态归化算法 init_alphas = torch.full((1,self.tagset_size), -10000.)# tensor([[-10000.,-10000.,-10000.,-10000.,-10000.]]) # START_TAG has all of the score init_alphas[0][self.tag2ix[START_TAG]] = 0#tensor([[-10000.,-10000.,-10000.,0,-10000.]]) forward_var = init_alphas for feat in feats: #feat指Bi-LSTM模型每一步的输出,大小为tagset_size alphas_t = [] for next_tag in range(self.tagset_size): # 取其中的某个tag对应的值进行扩张至(1,tagset_size)大小 # 如tensor([3]) -> tensor([[3,3,3,3,3]]) emit_score = feat[next_tag].view(1,-1).expand(1,self.tagset_size) # 增维操作 trans_score = self.transitions[next_tag].view(1,-1) # 上一步的路径和+转移分数+发射分数 next_tag_var = forward_var + trans_score + emit_score # log_sum_exp求和 alphas_t.append(log_sum_exp(next_tag_var).view(1)) # 增维 forward_var = torch.cat(alphas_t).view(1,-1) terminal_var = forward_var+self.transitions[self.tag2ix[END_TAG]] alpha = log_sum_exp(terminal_var) #归一项的值 return alpha def _get_lstm_features(self,sentence): self.hidden = self.init_hidden() embeds = self.word_embeds(sentence).view(len(sentence),1,-1) lstm_out, self.hidden = self.lstm(embeds, self.hidden) lstm_out = lstm_out.view(len(sentence), self.hidden_dim) lstm_feats = self.hidden2tag(lstm_out) return lstm_feats def _score_sentence(self,feats,tags): # gives the score of a provides tag sequence # 求某一路径的值 score = torch.zeros(1) tags = torch.cat([torch.tensor([self.tag2ix[START_TAG]], dtype=torch.long), tags]) for i , feat in enumerate(feats): score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]] score = score + self.transitions[self.tag2ix[END_TAG], tags[-1]] return score def _viterbi_decode(self, feats): # 当参数确定的时候,求解最佳路径 backpointers = [] init_vars = torch.full((1,self.tagset_size),-10000.)# tensor([[-10000.,-10000.,-10000.,-10000.,-10000.]]) init_vars[0][self.tag2ix[START_TAG]] = 0#tensor([[-10000.,-10000.,-10000.,0,-10000.]]) forward_var = init_vars for feat in feats: bptrs_t = [] # holds the back pointers for this step viterbivars_t = [] # holds the viterbi variables for this step for next_tag in range(self.tagset_size): next_tag_var = forward_var + self.transitions[next_tag] best_tag_id = argmax(next_tag_var) bptrs_t.append(best_tag_id) viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) backpointers.append(bptrs_t) # Transition to STOP_TAG terminal_var = forward_var + self.transitions[self.tag2ix[END_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0][best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.tag2ix[START_TAG] # Sanity check best_path.reverse() return path_score, best_path def neg_log_likelihood(self, sentence, tags): # 由lstm层计算得的每一时刻属于某一tag的值 feats = self._get_lstm_features(sentence) # 归一项的值 forward_score = self._forward_alg(feats) # 正确路径的值 gold_score = self._score_sentence(feats, tags) return forward_score - gold_score# -(正确路径的分值 - 归一项的值) def forward(self, sentence): # dont confuse this with _forward_alg above. # Get the emission scores from the BiLSTM lstm_feats = self._get_lstm_features(sentence) # Find the best path, given the features. score, tag_seq = self._viterbi_decode(lstm_feats) return score, tag_seq if __name__ == "__main__": EMBEDDING_DIM = 5 HIDDEN_DIM = 4 # Make up some training data training_data = [( "the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split() ), ( "georgia tech is a university in georgia".split(), "B I O O O O B".split() )] word2ix = {} for sentence, tags in training_data: for word in sentence: if word not in word2ix: word2ix[word] = len(word2ix) tag2ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, END_TAG: 4} model = BiLSTM_CRF(len(word2ix), tag2ix, EMBEDDING_DIM, HIDDEN_DIM) optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4) # Check predictions before training # 输出训练前的预测序列 with torch.no_grad(): precheck_sent = prepare_sequence(training_data[0][0], word2ix) precheck_tags = torch.tensor([tag2ix[t] for t in training_data[0][1]], dtype=torch.long) print(model(precheck_sent)) # Make sure prepare_sequence from earlier in the LSTM section is loaded for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data for sentence, tags in training_data: # Step 1. Remember that Pytorch accumulates gradients. # We need to clear them out before each instance model.zero_grad() # Step 2. Get our inputs ready for the network, that is, # turn them into Tensors of word indices. sentence_in = prepare_sequence(sentence, word2ix) targets = torch.tensor([tag2ix[t] for t in tags], dtype=torch.long) # Step 3. Run our forward pass. loss = model.neg_log_likelihood(sentence_in, targets) # Step 4. Compute the loss, gradients, and update the parameters by # calling optimizer.step() loss.backward() optimizer.step() # Check predictions after training with torch.no_grad(): precheck_sent = prepare_sequence(training_data[0][0], word2ix) print(model(precheck_sent)) # 输出结果 # (tensor(-9996.9365), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) # (tensor(-9973.2725), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])