MySQL千万数据方案调研,一不小心直接打挂我系统

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL DuckDB 分析主实例,集群系列 8核16GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 大家好,我是Leo。之前聊的RocketMQ暂时放放,目前正在调研一个千万数据的处理方案。在准备测试数据的时候,执行了个 select 把我电脑内存打光了。然后OOM,黑屏,宕机。。

本章概括

image.png


对Server影响


当执行下列代码时,因为InnoDB的数据是保存在主键索引上的,所以全表扫描是直接查主键索引的数据。他会从第一行一直查到最后一行放入结果集,然后返回给客户端。

select * from waybill

这个结果集是啥,为什么会导致我OOM?

先看一下Server层的查询流程

image.png

  1. 获取一行数据,把数据写入 net_buffer
  2. 直至到最后一行,如果 net_buffer 满了,就会调用网络接口把数据发送给 Client
  3. 发送成功之后,清空 net_buffer 继续接收
  4. 如果发送失败,返回 EAGAINWSAEWOULDBLOCK,就表示本地网络栈socket buffer写满了,进入等待。直到网络栈重新可写,再继续发送

socket buffer  属于操作系统层,他是操作系统提供的socket缓冲区。缓冲区默认大小为8K(1024×8=8192字节),也可以设置成64K。

使用socket发送数据时先把数据发送到socket缓冲区中,之后接收函数从缓冲区中读取数据,如果发送端特别快的时候,缓冲区很快就被填满,我们可以根据情况设置缓冲区的大小,通过setsockopt函数实现

从流程可以得知 MySQL是边读边发的

占用最大的就是 net_buffer ,而且 net_buffer 的上限会控制在8K,为什么还会出现 OOM

一开始执行的时候这类知识我是知道的,但是我忽略了一个问题,日常使用时,我们会把数据库放在云服务器或者RDS中,今天为了测试千万数据我就直接在本地测了。

这就直接导致,服务器一直把数据返给客户端。都在本地,一不留神,悲剧了


强调一点! 对Server层来说,查询的结果是分段发给客户端的,所以Server不会把内存打爆。问题自然出在客户端了。


对InnoDB影响


大数据量查询时,InnoDB 内存的数据页是在 Buffer Pool(BP) 中管理的。主要起到了加速更新的作用。实际上 Buffer Pool  还有一个更重要的作用就是加速查询。

这个加速查询还依赖一个重要的指标 内存命中率

可以通过 show engine innodb status 命令查看,或者通过百度搜索 MySQL内存命令率查询

如果所有的查询都能在内存页中找到答案,那命中率肯定是 100% 。但是在生产环境上业务是比较复杂的,这个很难做到。

InnoDB Buffer Pool 的大小是由参数 innodb_buffer_pool_size 确定的,一般建议设置成可用物理内存的 60%~80%。

InnoDB Buffer Pool innodb的缓冲池

innodb_buffer_pool_size innodb缓冲池大小的配置项

在查询时,如果 Buffer Pool 满了,而又要从磁盘读入一个数据页时,它会淘汰一个数据页进行存放新的数据页。淘汰的依据就是 LRU 算法

LRU 最近最少使用算法,淘汰最久未使用的数据。

可以参考如下图,是一个LRU基本模型,它是使用链表实现的。

image.png

  1. 第一张图是读取数据2时,会把2放入链表的头部,然后其他数据依次向后移动
  2. 第二张图同感
  3. 第三张图是读取了链表上没有的数据,就会把当前最久未使用的数据移出,把头部的最新数据写入。

是不是觉得设计的很奇妙? 我也觉得这个思想好奇妙,但是对于当前场景不实用!

大数据量写入之后,他会不断把链表的数据不断替换,也就是不断淘汰,最终导致内存命中率急剧下降,磁盘压力增加,SQL语句响应变慢。

在LRU的基础上InnoDB做了一些优化!

image.png

  1. 第一张图就是大概按照5:3的比例,把链表分成了young 区和 old 区。访问2时,会把2提到最前面,其他数据依靠靠后一格
  2. 第二张图是写入一个新数据88时,他会把old区域的最后一个数8移出,然后把新数据88写入old区的第一个位置

处于 old 区域的数据页,每次被访问的时候都要做下面这个判断:

  • 若这个数据页在 LRU 链表中存在的时间超过了 1 秒,就把它移动到链表头部;
  • 如果这个数据页在 LRU 链表中存在的时间短于 1 秒,位置保持不变。1 秒这个时间,是由参数 innodb_old_blocks_time 控制的。其默认值是 1000,单位毫秒。

这个策略,就是为了处理类似全表扫描的操作量身定制的。我们可以看一下全表查询的逻辑

  1. 扫描过程中,需要新插入的数据页,都被放到 old 区域 ;
  2. 一个数据页里面有多条记录,这个数据页会被多次访问到,但由于是顺序扫描,这个数据页第一次被访问和最后一次被访问的时间间隔不会超过 1 秒,因此还是会被保留在 old 区域;
  3. 再继续扫描后续的数据,之前的这个数据页之后也不会再被访问到,于是始终没有机会移到链表头部(也就是 young 区域),很快就会被淘汰出去。

可以看到,这个策略最大的收益,就是在扫描这个大表的过程中,虽然也用到了 Buffer Pool,但是对 young 区域完全没有影响,从而保证了 Buffer Pool 响应正常业务的查询命中率。


对我的影响


知道了原理之后,再进行实现下一步方案的时候就类似于搭积木一样。

万丈高楼平地起,地基不搭好,上面再豪华,轻轻一晃就倒了


结尾


有些不懂的地方或者不对的地方,麻烦各位指出,一定修改优化!


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3月前
|
运维 监控 关系型数据库
MySQL高可用方案:MHA与Galera Cluster对比
本文深入对比了MySQL高可用方案MHA与Galera Cluster的架构原理及适用场景。MHA适用于读写分离、集中写入的场景,具备高效写性能与简单运维优势;而Galera Cluster提供强一致性与多主写入能力,适合对数据一致性要求严格的业务。通过架构对比、性能分析及运维复杂度评估,帮助读者根据自身业务需求选择最合适的高可用方案。
|
7月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
5月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
284 0
|
4月前
|
存储 关系型数据库 MySQL
修复.net Framework4.x连接MYSQL时遇到utf8mb3字符集不支持错误方案。
通过上述步骤大多数情况下能够解决由于UTF-encoding相关错误所带来影响,在实施过程当中要注意备份重要信息以防止意外发生造成无法挽回损失,并且逐一排查确认具体原因以采取针对性措施解除障碍。
267 12
|
4月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
361 10
|
5月前
|
SQL 关系型数据库 MySQL
解决MySQL "ONLY_FULL_GROUP_BY" 错误的方案
在实际操作中,应优先考虑修正查询,使之符合 `ONLY_FULL_GROUP_BY`模式的要求,从而既保持了查询的准确性,也避免了潜在的不一致和难以预测的结果。只有在完全理解查询的业务逻辑及其后果,并且需要临时解决问题的情况下,才选择修改SQL模式或使用 `ANY_VALUE()`等方法作为短期解决方案。
656 8
|
4月前
|
监控 NoSQL 关系型数据库
保障Redis与MySQL数据一致性的强化方案
在设计时,需要充分考虑到业务场景和系统复杂度,避免为了追求一致性而过度牺牲系统性能。保持简洁但有效的策略往往比采取过于复杂的方案更加实际。同时,各种方案都需要在实际业务场景中经过慎重评估和充分测试才可以投入生产环境。
252 0
|
5月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
146 0
|
5月前
|
关系型数据库 MySQL Java
MySQL 分库分表 + 平滑扩容方案 (秒懂+史上最全)
MySQL 分库分表 + 平滑扩容方案 (秒懂+史上最全)

推荐镜像

更多