给Bert加速吧!NLP中的知识蒸馏论文 Distilled BiLSTM解读

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
NLP自然语言处理_基础版,每接口每天50万次
简介: 给Bert加速吧!NLP中的知识蒸馏论文 Distilled BiLSTM解读

论文题目:Distilling Task-Specific Knowledge from BERT into Simple Neural Networks

论文链接:https://arxiv.org/pdf/1903.12136.pdf


摘要


在自然语言处理文献中,神经网络变得越来越深入和复杂。这一趋势的苗头就是深度语言表示模型,其中包括BERT、ELMo和GPT。这些模型的出现和演进甚至导致人们相信上一代、较浅的语言理解神经网络(例如LSTM)已经过时了。然而这篇论文证明了如果没有网络架构的改变、不加入外部训练数据或其他的输入特征,基本的“轻量级”神经网络仍然可以具有竞争力。文本将最先进的语言表示模型BERT中的知识提炼为单层BiLSTM,以及用于句子对任务的暹罗对应模型。在语义理解、自然语言推理和情绪分类的多个数据集中,知识蒸馏模型获得了与ELMo的相当结果,参数量只有ELMo的大约1/100倍,而推理时间快了15倍。


1 简介


关于自然语言处理研究中,神经网络模型已经成了主力军,并且模型结构层出不穷,好像永无止境一样,这些过程中最开始的神经网络例如LSTM变得容易被忽视。例如ELMo模型在2018年一些列任务上取得了sota效果,再到双向编码表示模型Bert、GPT-2在更多任务上取得了很大提升。

但是如此之大的模型在实践落地的过程中是存在问题的:

  • 由于参数量特别大,例如 BERT 和 GPT-2,在移动设备等资源受限的系统中是不可部署的。
  • 由于推理时间效率低,它们也可能不适用于实时系统,对于QPS压测很多场景基本是不过关的。
  • 根据摩尔定律可知,我们需要在一定时间过后重新压缩模型以及重新评估模型性能。

针对上述问题,本文提出了一种基于领域知识的高效迁移学习方法:

  • 作者将BERT-large蒸馏到了单层的BiLSTM中,参数量减少了100倍,速度提升了15倍,效果虽然比BERT差不少,但可以和ELMo打成平手。
  • 同时因为任务数据有限,作者基于以下规则进行了10+倍的数据扩充:用[MASK]随机替换单词;基于POS标签替换单词;从样本中随机取出n-gram作为新的样本


2 相关工作


关于模型压缩的背景介绍,大家可以看下 李rumor的文章https://zhuanlan.zhihu.com/p/273378905,总结比较精炼和到位,这里不再重复赘述:

Hinton在NIPS2014[1]提出了知识蒸馏(Knowledge Distillation)的概念,旨在把一个大模型或者多个模型ensemble学到的知识迁移到另一个轻量级单模型上,方便部署。简单的说就是用小模型去学习大模型的预测结果,而不是直接学习训练集中的label。

在蒸馏的过程中,我们将原始大模型称为教师模型(teacher),新的小模型称为学生模型(student),训练集中的标签称为hard label,教师模型预测的概率输出为soft label,temperature(T)是用来调整soft label的超参数。

蒸馏这个概念之所以work,核心思想是因为好模型的目标不是拟合训练数据,而是学习如何泛化到新的数据。所以蒸馏的目标是让学生模型学习到教师模型的泛化能力,理论上得到的结果会比单纯拟合训练数据的学生模型要好。


在BERT提出后,如何瘦身就成了一个重要分支。主流的方法主要有剪枝、蒸馏和量化。量化的提升有限,因此免不了采用剪枝+蒸馏的融合方法来获取更好的效果。接下来将介绍BERT蒸馏的主要发展脉络,从各个研究看来,蒸馏的提升一方面来源于从精调阶段蒸馏->预训练阶段蒸馏,另一方面则来源于蒸馏最后一层知识->蒸馏隐层知识->蒸馏注意力矩阵。


3 模型方法


本篇论文第一步选择teacher 模型和student模型,第二步确立蒸馏程序:确立logit-regression目标函数和迁移数据集构建。


3.1 模型选择

对于“teacher”模型,本文选择Bert去做微调任务,比如文本分类,文本对分类等。对文本分类,可以直接将文本输入到bert,拿到cls输出直接softmax,可以得到每个标签概率:,其中是softmax权重矩阵,k是类别个数。对于文本对任务,我们可以直接两个文本输入到Bert提取特征,然后收入到softmax进行分类。

对于“student”模型,本文选择的是BiLSTM和一个非线性分类器。如下图所示:


26.png


27.png


主要流程是将文本词向量表示,输入到BiLSTM,选取正向和反向最后时刻的隐藏层输出并进行拼接,然后经过一个relu输出,输入到softmax得到最后的概率。


3.2 蒸馏目标

其中是权重矩阵的第i行,等于

蒸馏的目标就是为了最小化student模型与teacher模型的平方误差MSE:

其中分类代表teacher和student模型的logit输出

最终蒸馏模型的训练函数可以将MSE损失和交叉熵损失结合起来:

3.3 数据增强

  • 用[MASK]随机替换单词:“I loved the comedy.”变成“I [MASK] the comedy”
  • 基于POS标签替换单词;“What do pigs eat?” 变成“How do pigs eat?”
  • 从样本中随机取出n-gram作为新的样本


4 实验结果


本文采用的数据集为SST-2、MNLI、QQP

实验结果如下:


28.png


推理更加快:


29.png


5 蒸馏代码


https://github.com/qiangsiwei/bert_distill

# coding:utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from keras.preprocessing import sequence
import pickle
from tqdm import tqdm
import numpy as np
from transformers import BertTokenizer
from utils import load_data
from bert_finetune import BertClassification
USE_CUDA = torch.cuda.is_available()
if USE_CUDA: torch.cuda.set_device(0)
FTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor
LTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor
device = torch.device('cuda' if USE_CUDA else 'cpu')
class RNN(nn.Module):
    def __init__(self, x_dim, e_dim, h_dim, o_dim):
        super(RNN, self).__init__()
        self.h_dim = h_dim
        self.dropout = nn.Dropout(0.2)
        self.emb = nn.Embedding(x_dim, e_dim, padding_idx=0)
        self.lstm = nn.LSTM(e_dim, h_dim, bidirectional=True, batch_first=True)
        self.fc = nn.Linear(h_dim * 2, o_dim)
        self.softmax = nn.Softmax(dim=1)
        self.log_softmax = nn.LogSoftmax(dim=1)
    def forward(self, x):
        embed = self.dropout(self.emb(x))
        out, _ = self.lstm(embed)
        hidden = self.fc(out[:, -1, :])
        return self.softmax(hidden), self.log_softmax(hidden)
class Teacher(object):
    def __init__(self, bert_model='bert-base-chinese', max_seq=128, model_dir=None):
        self.max_seq = max_seq
        self.tokenizer = BertTokenizer.from_pretrained(bert_model, do_lower_case=True)
        self.model = torch.load(model_dir)
        self.model.eval()
    def predict(self, text):
        tokens = self.tokenizer.tokenize(text)[:self.max_seq]
        input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
        input_mask = [1] * len(input_ids)
        padding = [0] * (self.max_seq - len(input_ids))
        input_ids = torch.tensor([input_ids + padding], dtype=torch.long).to(device)
        input_mask = torch.tensor([input_mask + padding], dtype=torch.long).to(device)
        logits = self.model(input_ids, input_mask, None)
        return F.softmax(logits, dim=1).detach().cpu().numpy()
def train_student(bert_model_dir="/data0/sina_up/dajun1/src/doc_dssm/sentence_bert/bert_pytorch",
                  teacher_model_path="./model/teacher.pth",
                  student_model_path="./model/student.pth",
                  data_dir="data/hotel",
                  vocab_path="data/char.json",
                  max_len=50,
                  batch_size=64,
                  lr=0.002,
                  epochs=10,
                  alpha=0.5):
    teacher = Teacher(bert_model=bert_model_dir, model_dir=teacher_model_path)
    teach_on_dev = True
    (x_tr, y_tr, t_tr), (x_de, y_de, t_de), vocab_size = load_data(data_dir, vocab_path)
    l_tr = list(map(lambda x: min(len(x), max_len), x_tr))
    l_de = list(map(lambda x: min(len(x), max_len), x_de))
    x_tr = sequence.pad_sequences(x_tr, maxlen=max_len)
    x_de = sequence.pad_sequences(x_de, maxlen=max_len)
    with torch.no_grad():
        t_tr = np.vstack([teacher.predict(text) for text in t_tr])
        t_de = np.vstack([teacher.predict(text) for text in t_de])
    with open(data_dir+'/t_tr', 'wb') as fout: pickle.dump(t_tr,fout)
    with open(data_dir+'/t_de', 'wb') as fout: pickle.dump(t_de,fout)
    model = RNN(vocab_size, 256, 256, 2)
    if USE_CUDA: model = model.cuda()
    opt = optim.Adam(model.parameters(), lr=lr)
    ce_loss = nn.NLLLoss()
    mse_loss = nn.MSELoss()
    for epoch in range(epochs):
        losses, accuracy = [], []
        model.train()
        for i in range(0, len(x_tr), batch_size):
            model.zero_grad()
            bx = Variable(LTensor(x_tr[i:i + batch_size]))
            by = Variable(LTensor(y_tr[i:i + batch_size]))
            bl = Variable(LTensor(l_tr[i:i + batch_size]))
            bt = Variable(FTensor(t_tr[i:i + batch_size]))
            py1, py2 = model(bx)
            loss = alpha * ce_loss(py2, by) + (1-alpha) * mse_loss(py1, bt)  # in paper, only mse is used
            loss.backward()
            opt.step()
            losses.append(loss.item())
        for i in range(0, len(x_de), batch_size):
            model.zero_grad()
            bx = Variable(LTensor(x_de[i:i + batch_size]))
            bl = Variable(LTensor(l_de[i:i + batch_size]))
            bt = Variable(FTensor(t_de[i:i + batch_size]))
            py1, py2 = model(bx)
            loss = mse_loss(py1, bt)
            if teach_on_dev:
                loss.backward()             
                opt.step()
            losses.append(loss.item())
        model.eval()
        with torch.no_grad():
            for i in range(0, len(x_de), batch_size):
                bx = Variable(LTensor(x_de[i:i + batch_size]))
                by = Variable(LTensor(y_de[i:i + batch_size]))
                bl = Variable(LTensor(l_de[i:i + batch_size]))
                _, py = torch.max(model(bx, bl)[1], 1)
                accuracy.append((py == by).float().mean().item())
        print(np.mean(losses), np.mean(accuracy))
    torch.save(model, student_model_path)
if __name__ == "__main__":
    train_student()


参考链接


相关文章
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
46 1
|
3月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
64 1
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
40 0
|
3月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
39 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
48 0
|
3月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
35 0
|
3月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
22 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--1 赛后总结与分析
参与讯飞英文学术论文分类挑战赛的经验,包括使用的多种模型和技术,如TextCNN、FastText、LightGBM和BERT,以及提分策略和遇到的问题。
40 0
|
5月前
|
自然语言处理 数据挖掘
【自然语言处理NLP】Bert中的特殊词元表示
【自然语言处理NLP】Bert中的特殊词元表示
72 3
|
5月前
|
自然语言处理
【自然语言处理NLP】DPCNN模型论文精读笔记
【自然语言处理NLP】DPCNN模型论文精读笔记
72 2

热门文章

最新文章