一、jvm内存调优
主要的目的是减小GC的频率和Full GC的次数。
1.Full GC
会对整个堆进行整理,包括Young、Tenured和Perm。Full GC由于须要对整个堆进行回收,因此比较慢,所以应该尽量减小Full GC的次数。数组
2.致使Full GC的缘由缓存
1)年老代(Tenured)被写满服务器
调优时尽可能让对象在新生代GC时被回收、让对象在新生代多存活一段时间和不要建立过大的对象及数组避免直接在旧生代建立对象 。并发
2)持久代Pemanet Generation空间不足jvm
增大Perm Gen空间,避免太多静态对象 , 控制好新生代和旧生代的比例高并发
3)System.gc()被显示调用工具
垃圾回收不要手动触发,尽可能依靠JVM自身的机制
在对JVM调优的过程当中,很大一部分工做就是对于FullGC的调节,下面详细介绍对应JVM调优的方法和步骤。
二、jvm性能调优工具及思路(重要)—面试必看
2.1.JVM调优参数参考
1.针对JVM堆的设置,通常能够经过-Xms -Xmx限定其最小、最大值,为了防止垃圾收集器在最小、最大之间收缩堆而产生额外的时间,一般把最大、最小设置为相同的值;
2.年轻代和年老代将根据默认的比例(1:2)分配堆内存, 能够经过调整两者之间的比率NewRadio来调整两者之间的大小,也能够针对回收代。
好比年轻代,经过 -XX:newSize -XX:MaxNewSize来设置其绝对大小。一样,为了防止年轻代的堆收缩,咱们一般会把-XX:newSize -XX:MaxNewSize设置为一样大小。
3.年轻代和年老代设置多大才算合理
1)更大的年轻代必然致使更小的年老代,大的年轻代会延长普通GC的周期,但会增长每次GC的时间;小的年老代会致使更频繁的Full GC
2)更小的年轻代必然致使更大年老代,小的年轻代会致使普通GC很频繁,但每次的GC时间会更短;大的年老代会减小Full GC的频率
如何选择应该依赖应用程序对象生命周期的分布状况: 若是应用存在大量的临时对象,应该选择更大的年轻代;若是存在相对较多的持久对象,年老代应该适当增大。但不少应用都没有这样明显的特性。
在抉择时应该根 据如下两点:
(1)本着Full GC尽可能少的原则,让年老代尽可能缓存经常使用对象,JVM的默认比例1:2也是这个道理 。
(2)经过观察应用一段时间,看其余在峰值时年老代会占多少内存,在不影响Full GC的前提下,根据实际状况加大年轻代,好比能够把比例控制在1:1。但应该给年老代至少预留1/3的增加空间。
4.在配置较好的机器上(好比多核、大内存),能够为年老代选择并行收集算法: -XX:+UseParallelOldGC 。
5.线程堆栈的设置:每一个线程默认会开启1M的堆栈,用于存放栈帧、调用参数、局部变量等,对大多数应用而言这个默认值太了,通常256K就足用。
理论上,在内存不变的状况下,减小每一个线程的堆栈,能够产生更多的线程,但这实际上还受限于操做系统。
2.2.调优工具之jps(Java Virtual Machine Process Status Tool)
jps主要用来输出JVM中运行的进程状态信息。语法格式如下:
jps [options] [hostid]
如果不指定hostid就默认为当前主机或服务器。
命令行参数选项说明如下:
-q 不输出类名、Jar名和传入main方法的参数
-m 输出传入main方法的参数
-l 输出main类或Jar的全限名
-v 输出传入JVM的参数
比如下面:
root@ubuntu:/# jps -m -l 2458 org.artifactory.standalone.main.Main /usr/local/artifactory-2.2.5/etc/jetty.xml 29920 com.sun.tools.hat.Main -port 9998 /tmp/dump.dat 3149 org.apache.catalina.startup.Bootstrap start 30972 sun.tools.jps.Jps -m -l 8247 org.apache.catalina.startup.Bootstrap start 25687 com.sun.tools.hat.Main -port 9999 dump.dat 21711 mrf-center.jar
2.3.调优工具之jstack
jstack主要用来查看某个Java进程内的线程堆栈信息。语法格式如下:
jstack [option] pid
jstack [option] executable core
jstack [option] [server-id@]remote-hostname-or-ip
命令行参数选项说明如下:
-l long listings
,会打印出额外的锁信息,在发生死锁时可以用jstack -l pid来观察锁持有情况
-m mixed mode
,不仅会输出Java堆栈信息,还会输出C/C++堆栈信息(比如Native方法)
jstack可以定位到线程堆栈,根据堆栈信息我们可以定位到具体代码,所以它在JVM性能调优中使用得非常多。下面我们来一个实例找出某个Java进程中最耗费CPU的Java线程并定位堆栈信息,用到的命令有ps、top、printf、jstack、grep。
第一步先找出Java进程ID,我部署在服务器上的Java应用名称为mrf-center:
root@ubuntu:/# ps -ef | grep mrf-center | grep -v grep
root 21711 1 1 14:47 pts/3 00:02:10 java -jar mrf-center.jar
得到进程ID为21711,第二步找出该进程内最耗费CPU的线程,可以使用ps -Lfp pid
或者ps -mp pid -o THREAD
, tid, time或者top -Hp pid,我这里用第三个,输出如下:
TIME列就是各个Java线程耗费的CPU时间,CPU时间最长的是线程ID为21742的线程,用
printf "%x\n" 21742
得到21742的十六进制值为54ee,下面会用到。
OK,下一步终于轮到jstack上场了,它用来输出进程21711的堆栈信息,然后根据线程ID的十六进制值grep,如下:
root@ubuntu:/# jstack 21711 | grep 54ee
"PollIntervalRetrySchedulerThread" prio=10 tid=0x00007f950043e000 nid=0x54ee in Object.wait() [0x00007f94c6eda000]
可以看到CPU消耗在PollIntervalRetrySchedulerThread这个类的Object.wait(),我找了下我的代码,定位到下面的代码:
// Idle wait getLog().info("Thread [" + getName() + "] is idle waiting..."); schedulerThreadState = PollTaskSchedulerThreadState.IdleWaiting; long now = System.currentTimeMillis(); long waitTime = now + getIdleWaitTime(); long timeUntilContinue = waitTime - now; synchronized(sigLock) { try { if(!halted.get()) { sigLock.wait(timeUntilContinue); } } catch (InterruptedException ignore) { } }
它是轮询任务的空闲等待代码,上面的sigLock.wait(timeUntilContinue)
就对应了前面的Object.wait()
。
2.4.调优工具之jmap(Memory Map)和jhat(Java Heap Analysis Tool)
jmap用来查看堆内存使用状况,一般结合jhat使用。
jmap语法格式如下:
jmap [option] pid
jmap [option] executable core
jmap [option] [server-id@]remote-hostname-or-ip
如果运行在64位JVM上,可能需要指定-J-d64命令选项参数。
jmap -permstat pid
打印进程的类加载器和类加载器加载的持久代对象信息,输出:类加载器名称、对象是否存活(不可靠)、对象地址、父类加载器、已加载的类大小等信息,如下图:
使用jmap -heap pid查看进程堆内存使用情况,包括使用的GC算法、堆配置参数和各代中堆内存使用情况。比如下面的例子:
root@ubuntu:/# jmap -heap 21711 Attaching to process ID 21711, please wait... Debugger attached successfully. Server compiler detected. JVM version is 20.10-b01 using thread-local object allocation. Parallel GC with 4 thread(s) Heap Configuration: MinHeapFreeRatio = 40 MaxHeapFreeRatio = 70 MaxHeapSize = 2067791872 (1972.0MB) NewSize = 1310720 (1.25MB) MaxNewSize = 17592186044415 MB OldSize = 5439488 (5.1875MB) NewRatio = 2 SurvivorRatio = 8 PermSize = 21757952 (20.75MB) MaxPermSize = 85983232 (82.0MB) Heap Usage: PS Young Generation Eden Space: capacity = 6422528 (6.125MB) used = 5445552 (5.1932830810546875MB) free = 976976 (0.9317169189453125MB) 84.78829520089286% used From Space: capacity = 131072 (0.125MB) used = 98304 (0.09375MB) free = 32768 (0.03125MB) 75.0% used To Space: capacity = 131072 (0.125MB) used = 0 (0.0MB) free = 131072 (0.125MB) 0.0% used PS Old Generation capacity = 35258368 (33.625MB) used = 4119544 (3.9287033081054688MB) free = 31138824 (29.69629669189453MB) 11.683876009235595% used PS Perm Generation capacity = 52428800 (50.0MB) used = 26075168 (24.867218017578125MB) free = 26353632 (25.132781982421875MB) 49.73443603515625% used ....
使用jmap -histo[:live] pid查看堆内存中的对象数目、大小统计直方图,如果带上live则只统计活对象,如下:
root@ubuntu:/# jmap -histo:live 21711 | more num #instances #bytes class name ---------------------------------------------- 1: 38445 5597736 <constMethodKlass> 2: 38445 5237288 <methodKlass> 3: 3500 3749504 <constantPoolKlass> 4: 60858 3242600 <symbolKlass> 5: 3500 2715264 <instanceKlassKlass> 6: 2796 2131424 <constantPoolCacheKlass> 7: 5543 1317400 [I 8: 13714 1010768 [C 9: 4752 1003344 [B 10: 1225 639656 <methodDataKlass> 11: 14194 454208 java.lang.String 12: 3809 396136 java.lang.Class 13: 4979 311952 [S 14: 5598 287064 [[I 15: 3028 266464 java.lang.reflect.Method 16: 280 163520 <objArrayKlassKlass> 17: 4355 139360 java.util.HashMap$Entry 18: 1869 138568 [Ljava.util.HashMap$Entry; 19: 2443 97720 java.util.LinkedHashMap$Entry 20: 2072 82880 java.lang.ref.SoftReference 21: 1807 71528 [Ljava.lang.Object; 22: 2206 70592 java.lang.ref.WeakReference 23: 934 52304 java.util.LinkedHashMap 24: 871 48776 java.beans.MethodDescriptor 25: 1442 46144 java.util.concurrent.ConcurrentHashMap$HashEntry 26: 804 38592 java.util.HashMap 27: 948 37920 java.util.concurrent.ConcurrentHashMap$Segment 28: 1621 35696 [Ljava.lang.Class; 29: 1313 34880 [Ljava.lang.String; 30: 1396 33504 java.util.LinkedList$Entry 31: 462 33264 java.lang.reflect.Field 32: 1024 32768 java.util.Hashtable$Entry 33: 948 31440 [Ljava.util.concurrent.ConcurrentHashMap$HashEntry;
class name是对象类型,说明如下:
B byte C char D double F float I int J long Z boolean [ 数组,如[I表示int[] [L+类名 其他对象
还有一个很常用的情况是:用jmap把进程内存使用情况dump到文件中,再用jhat分析查看。jmap进行dump命令格式如下:
jmap -dump:format=b,file=dumpFileName pid
我一样地对上面进程ID为21711进行Dump:
root@ubuntu:/# jmap -dump:format=b,file=/tmp/dump.dat 21711
Dumping heap to /tmp/dump.dat ...
Heap dump file created
dump出来的文件可以用MAT、VisualVM等工具查看,这里用jhat查看:
root@ubuntu:/# jhat -port 9998 /tmp/dump.dat Reading from /tmp/dump.dat... Dump file created Tue Jan 28 17:46:14 CST 2014 Snapshot read, resolving... Resolving 132207 objects... Chasing references, expect 26 dots.......................... Eliminating duplicate references.......................... Snapshot resolved. Started HTTP server on port 9998 Server is ready
注意如果Dump文件太大,可能需要加上-J-Xmx512m这种参数指定最大堆内存,即jhat -J-Xmx512m -port 9998 /tmp/dump.dat。然后就可以在浏览器中输入主机地址:9998查看了:
上面红线框出来的部分大家可以自己去摸索下,最后一项支持OQL(对象查询语言)