探讨一下索引失效的几种场景

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 大家好前面我们介绍一下关于实战的知识点。主要应用于表数据比较多的情况下,如何巧妙地从中取出几条数据。今天介绍一下索引失效的几种不好发现的情况。

大家好前面我们介绍一下关于实战的知识点。主要应用于表数据比较多的情况下,如何巧妙地从中取出几条数据。今天介绍一下索引失效的几种不好发现的情况。

声明一下跟丁奇老师学习的,自己做一个技术总结


说到索引失效,今天主要从三个方向分析。函数操作隐式类型转换隐式字符编码转换。这里不包含like,!=等


函数操作


假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号(tradeid)、交易员 id(operator)、交易时间(t_modified)等字段。为了便于描述,我们先忽略其他字段。这个表的建表语句如下:

mysql> CREATE TABLE `tradelog` (
  `id` int(11) NOT NULL,
  `tradeid` varchar(32) DEFAULT NULL,
  `operator` int(11) DEFAULT NULL,
  `t_modified` datetime DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `tradeid` (`tradeid`),
  KEY `t_modified` (`t_modified`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

假设,现在已经记录了从 2016 年初到 2018 年底的所有数据,运营部门有一个需求是,要统计发生在所有年份中 7 月份的交易记录总数。这个逻辑看上去并不复杂,你的 SQL 语句可能会这么写:

mysql> select count(*) from tradelog where month(t_modified)=7;

由于 t_modified 字段上有索引,于是你就很放心地在生产库中执行了这条语句,但却发现执行了特别久,才返回了结果。

如果你问 DBA 同事为什么会出现这样的情况,他大概会告诉你:如果对字段做了函数计算,就用不上索引了,这是 MySQL 的规定。

现在你已经学过了 InnoDB 的索引结构了,可以再追问一句为什么?为什么条件是 where t_modified='2018-7-1’的时候可以用上索引,而改成 where month(t_modified)=7 的时候就不行了?

下面是这个 t_modified 索引的示意图。方框上面的数字就是 month() 函数对应的值。

image.png

如果你的 SQL 语句条件用的是 where t_modified='2018-7-1’的话,引擎就会按照上面绿色箭头的路线,快速定位到 t_modified='2018-7-1’需要的结果。

实际上,B+ 树提供的这个快速定位能力,来源于同一层兄弟节点的有序性。

但是,如果计算 month() 函数的话,你会看到传入 7 的时候,在树的第一层就不知道该怎么办了。

也就是说,对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。

需要注意的是,优化器并不是要放弃使用这个索引。

在这个例子里,放弃了树搜索功能,优化器可以选择遍历主键索引,也可以选择遍历索引 t_modified,优化器对比索引大小后发现,索引 t_modified 更小,遍历这个索引比遍历主键索引来得更快。因此最终还是会选择索引 t_modified。

接下来,我们使用 explain 命令,查看一下这条 SQL 语句的执行结果。

image.png

key="t_modified"表示的是,使用了 t_modified 这个索引;我在测试表数据中插入了 10 万行数据,rows=100335,说明这条语句扫描了整个索引的所有值;Extra 字段的 Using index,表示的是使用了覆盖索引。

也就是说,由于在 t_modified 字段加了 month() 函数操作,导致了全索引扫描。为了能够用上索引的快速定位能力,我们就要把 SQL 语句改成基于字段本身的范围查询。按照下面这个写法,优化器就能按照我们预期的,用上 t_modified 索引的快速定位能力了。

mysql> select count(*) from tradelog where
    -> (t_modified >= '2016-7-1' and t_modified<'2016-8-1') or
    -> (t_modified >= '2017-7-1' and t_modified<'2017-8-1') or 
    -> (t_modified >= '2018-7-1' and t_modified<'2018-8-1');

当然,如果你的系统上线时间更早,或者后面又插入了之后年份的数据的话,你就需要再把其他年份补齐。

到这里我给你说明了,由于加了 month() 函数操作,MySQL 无法再使用索引快速定位功能,而只能使用全索引扫描。

不过优化器在个问题上确实有“偷懒”行为,即使是对于不改变有序性的函数,也不会考虑使用索引。比如,对于 select * from tradelog where id + 1 = 10000 这个 SQL 语句,这个加 1 操作并不会改变有序性,但是 MySQL 优化器还是不能用 id 索引快速定位到 9999 这一行。所以,需要你在写 SQL 语句的时候,手动改写成 where id = 10000 -1 才可以。


隐式类型转换


我们一起看一下这条 SQL 语句:

mysql> select * from tradelog where tradeid=110717;

交易编号 tradeid 这个字段上,本来就有索引,但是 explain 的结果却显示,这条语句需要走全表扫描。你可能也发现了,tradeid 的字段类型是 varchar(32),而输入的参数却是整型,所以需要做类型转换。

那么,现在这里就有两个问题:

  1. 数据类型转换的规则是什么?
  2. 为什么有数据类型转换,就需要走全索引扫描?

先来看第一个问题,你可能会说,数据库里面类型这么多,这种数据类型转换规则更多,我记不住,应该怎么办呢?

这里有一个简单的方法,看 select “10” > 9 的结果:

  1. 如果规则是“将字符串转成数字”,那么就是做数字比较,结果应该是 1;
  2. 如果规则是“将数字转成字符串”,那么就是做字符串比较,结果应该是 0。

image.png

从图中可知,select “10” > 9 返回的是 1,所以你就能确认 MySQL 里的转换规则了:在 MySQL 中,字符串和数字做比较的话,是将字符串转换成数字。

这时,你再看这个全表扫描的语句:

mysql> select * from tradelog where tradeid=110717;

就知道对于优化器来说,这个语句相当于:

mysql> select * from tradelog where  CAST(tradid AS signed int) = 110717;

也就是说,这条语句触发了我们上面说到的规则:对索引字段做函数操作,优化器会放弃走树搜索功能。

现在,我留给你一个小问题,id 的类型是 int,如果执行下面这个语句,是否会导致全表扫描呢?

select * from tradelog where id="83126";

你可以先自己分析一下,再到数据库里面去验证确认。

接下来,我们再来看一个稍微复杂点的例子。


隐式字符编码转换


假设系统里还有另外一个表 trade_detail,用于记录交易的操作细节。为了便于量化分析和复现,我往交易日志表 tradelog 和交易详情表 trade_detail 这两个表里插入一些数据。

mysql> CREATE TABLE `trade_detail` (
  `id` int(11) NOT NULL,
  `tradeid` varchar(32) DEFAULT NULL,
  `trade_step` int(11) DEFAULT NULL, /*操作步骤*/
  `step_info` varchar(32) DEFAULT NULL, /*步骤信息*/
  PRIMARY KEY (`id`),
  KEY `tradeid` (`tradeid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into tradelog values(1, 'aaaaaaaa', 1000, now());
insert into tradelog values(2, 'aaaaaaab', 1000, now());
insert into tradelog values(3, 'aaaaaaac', 1000, now());
insert into trade_detail values(1, 'aaaaaaaa', 1, 'add');
insert into trade_detail values(2, 'aaaaaaaa', 2, 'update');
insert into trade_detail values(3, 'aaaaaaaa', 3, 'commit');
insert into trade_detail values(4, 'aaaaaaab', 1, 'add');
insert into trade_detail values(5, 'aaaaaaab', 2, 'update');
insert into trade_detail values(6, 'aaaaaaab', 3, 'update again');
insert into trade_detail values(7, 'aaaaaaab', 4, 'commit');
insert into trade_detail values(8, 'aaaaaaac', 1, 'add');
insert into trade_detail values(9, 'aaaaaaac', 2, 'update');
insert into trade_detail values(10, 'aaaaaaac', 3, 'update again');
insert into trade_detail values(11, 'aaaaaaac', 4, 'commit');

这时候,如果要查询 id=2 的交易的所有操作步骤信息,SQL 语句可以这么写:

mysql> select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2; /*语句Q1*/

image.png

运行结果是:

  1. 第一行显示优化器会先在交易记录表 tradelog 上查到 id=2 的行,这个步骤用上了主键索引,rows=1 表示只扫描一行;
  2. 第二行 key=NULL,表示没有用上交易详情表 trade_detail 上的 tradeid 索引,进行了全表扫描。

在这个执行计划里,是从 tradelog 表中取 tradeid 字段,再去 trade_detail 表里查询匹配字段。因此,我们把 tradelog 称为驱动表,把 trade_detail 称为被驱动表,把 tradeid 称为关联字段。

接下来,我们看下这个 explain 结果表示的执行流程:

image.png

  1. 第 1 步,是根据 id 在 tradelog 表里找到 L2 这一行;
  2. 第 2 步,是从 L2 中取出 tradeid 字段的值;
  3. 第 3 步,是根据 tradeid 值到 trade_detail 表中查找条件匹配的行。explain 的结果里面第二行的 key=NULL 表示的就是,这个过程是通过遍历主键索引的方式,一个一个地判断 tradeid 的值是否匹配。

进行到这里,你会发现第 3 步不符合我们的预期。因为表 trade_detail 里 tradeid 字段上是有索引的,我们本来是希望通过使用 tradeid 索引能够快速定位到等值的行。但,这里并没有。

如果你去问 DBA 同学,他们可能会告诉你,因为这两个表的字符集不同,一个是 utf8,一个是 utf8mb4,所以做表连接查询的时候用不上关联字段的索引。这个回答,也是通常你搜索这个问题时会得到的答案。

但是你应该再追问一下,为什么字符集不同就用不上索引呢?

我们说问题是出在执行步骤的第 3 步,如果单独把这一步改成 SQL 语句的话,那就是:

mysql> select * from trade_detail where tradeid=$L2.tradeid.value; 

其中,$L2.tradeid.value 的字符集是 utf8mb4。

参照前面的两个例子,你肯定就想到了,字符集 utf8mb4 是 utf8 的超集,所以当这两个类型的字符串在做比较的时候,MySQL 内部的操作是,先把 utf8 字符串转成 utf8mb4 字符集,再做比较。

这个设定很好理解,utf8mb4 是 utf8 的超集。类似地,在程序设计语言里面,做自动类型转换的时候,为了避免数据在转换过程中由于截断导致数据错误,也都是“按数据长度增加的方向”进行转换的。

因此, 在执行上面这个语句的时候,需要将被驱动数据表里的字段一个个地转换成 utf8mb4,再跟 L2 做比较。

也就是说,实际上这个语句等同于下面这个写法:

select * from trade_detail  where CONVERT(traideid USING utf8mb4)=$L2.tradeid.value; 

CONVERT() 函数,在这里的意思是把输入的字符串转成 utf8mb4 字符集。这就再次触发了我们上面说到的原则:对索引字段做函数操作,优化器会放弃走树搜索功能。

到这里,你终于明确了,字符集不同只是条件之一,连接过程中要求在被驱动表的索引字段上加函数操作,是直接导致对被驱动表做全表扫描的原因。

作为对比验证,我给你提另外一个需求,“查找 trade_detail 表里 id=4 的操作,对应的操作者是谁”,再来看下这个语句和它的执行计划。

mysql>select l.operator from tradelog l , trade_detail d where d.tradeid=l.tradeid and d.id=4;

image.png

这个语句里 trade_detail 表成了驱动表,但是 explain 结果的第二行显示,这次的查询操作用上了被驱动表 tradelog 里的索引 (tradeid),扫描行数是 1。这也是两个 tradeid 字段的 join 操作,为什么这次能用上被驱动表的 tradeid 索引呢?我们来分析一下。

假设驱动表 trade_detail 里 id=4 的行记为 R4,那么在连接的时候(图 5 的第 3 步),被驱动表 tradelog 上执行的就是类似这样的 SQL 语句:

select operator from tradelog  where traideid =$R4.tradeid.value; 

这时候 $R4.tradeid.value 的字符集是 utf8, 按照字符集转换规则,要转成 utf8mb4,所以这个过程就被改写成:

select operator from tradelog  where traideid =CONVERT($R4.tradeid.value USING utf8mb4); 

你看,这里的 CONVERT 函数是加在输入参数上的,这样就可以用上被驱动表的 traideid 索引。理解了原理以后,就可以用来指导操作了。如果要优化语句有两种办法

select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2;
  1. 比较常见的优化方法是,把 trade_detail 表上的 tradeid 字段的字符集也改成 utf8mb4,这样就没有字符集转换的问题了。
alter table trade_detail modify tradeid varchar(32) CHARACTER SET utf8mb4 default null;
  1. 如果能够修改字段的字符集的话,是最好不过了。但如果数据量比较大, 或者业务上暂时不能做这个 DDL 的话,那就只能采用修改 SQL 语句的方法了。
mysql> select d.* from tradelog l , trade_detail d where d.tradeid=CONVERT(l.tradeid USING utf8) and l.id=2; 

image.png

这里,我主动把 l.tradeid 转成 utf8,就避免了被驱动表上的字符编码转换,从 explain 结果可以看到,这次索引走对了。


总结


这里介绍的是MySQL索引失效的三种类型。通过介绍案例,再到SQL分析最后到结论总结。如果有不清楚的可以私信我


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
6月前
|
SQL Oracle 关系型数据库
分析索引失效的几种情况
联合索引 is not null 只要在建立的索引列(不分先后)都会走, in null时 必须要和建立索引第一列一起使用,当建立索引第一位置条件是is null 时,其他建立索引的列可以是is null(但必须在所有列 都满足is null的时候),或者=一个值; 当建立索引的第一位置是=一个值时,其他索引列可以是任何情况(包括is null =一个值),以上两种情况索引都会走。其他情况不会走。
101 1
|
6月前
|
SQL Oracle 关系型数据库
索引失效的情况分析
大家都知道,一条查询语句走了索引和没走索引的查询效率是非常大的,在我们建好了表,建好了索引后,但是一些不好的sql会导致我们的索引失效,下面介绍一下索引失效的几种情况
43 0
|
6月前
|
SQL 关系型数据库 MySQL
14. 什么情况下索引会失效 ?
了解 MySQL 索引失效的情况对优化 SQL 查询至关重要。避免在列上使用函数、运算、!=、not in、OR 和 %value% LIKE 操作,以保持索引有效性。使用组合索引代替多个单列索引,防止范围查询后的列无法使用索引。注意,NULL 值、列类型不匹配和隐式转换也可能导致索引失效。
88 0
|
6月前
|
SQL 关系型数据库 MySQL
索引失效的10中场景
索引失效的10中场景
|
存储 关系型数据库 MySQL
教你优雅的实现索引失效
教你优雅的实现索引失效
88 0
|
关系型数据库 MySQL 索引
索引失效的情况
索引失效的情况
80 0
|
关系型数据库 MySQL 索引
MySQL索引失效的场景
MySQL中索引可以失效的场景有很多,下面列举一些常见的场景,并提供相应的示例代码。
94 0
|
数据库 索引
MysSQL索引会失效的几种情况分析
MysSQL索引会失效的几种情况分析
150 0
MysSQL索引会失效的几种情况分析
|
存储 SQL 搜索推荐
索引失效案例
索引失效案例
索引失效案例
|
SQL 存储 关系型数据库
MySQL索引失效问题
MySQL索引失效问题
110 0