Python面试题大全(四):数据库篇

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Python面试题大全(四):数据库篇

正文


数据库


MySQL


198.主键 超键 候选键 外键


主键:数据库表中对存储数据对象予以唯一和完整标识的数据列或属性的组合。一个数据列只能有一个主键,且主键的取值不能缺失,即不能为空值(Null).


超键:在关系中能唯一标识元组的属性集称为关系模式的超键。一个属性可以作为一个超键,多个属性组合在一起也可以作为一个超键。超键包含候选键和主键。


候选键:是最小超键,即没有冗余元素的超键。


外键:在一个表中存在的另一个表的主键称此表的外键。


199.视图的作用,视图可以更改么?


视图是虚拟的表,与包含数据的表不一样,视图只包含使用时动态检索数据的查询;不包含任何列或数据。使用视图可以简化复杂的sql操作,隐藏具体的细节,保护数据;视图创建后,可以使用与表相同的方式利用它们。


视图不能被索引,也不能有关联的触发器或默认值,如果视图本身内有order by则对视图再次order by将被覆盖。


创建视图: create view xxx as xxxxxx


对于某些视图比如未使用联结子查询分组聚集函数Distinct Union等,是可以对其更新的,对视图的更新将对基表进行更新;但是视图主要用于简化检索,保护数据,并不用于更新,而且大部分视图都不可以更新。


200.drop,delete与truncate的区别


drop直接删掉表,truncate删除表中数据,再插入时自增长id又从1开始,delete删除表中数据,可以加where字句。


1.delete 语句执行删除的过程是每次从表中删除一行,并且同时将该行的删除操作作为事务记录在日志中保存以便进行回滚操作。truncate table则一次性地从表中删除所有的数据并不把单独的删除操作记录记入日志保存,删除行是不能恢复的。并且在删除的过程中不会激活与表有关的删除触发器,执行速度快。


2.表和索引所占空间。当表被truncate后,这个表和索引所占用的空间会恢复到初始大小,而delete操作不会减少表或索引所占用的空间。drop语句将表所占用的空间全释放掉。


3.一般而言,drop>truncate>delete


4.应用范围。truncate只能对table,delete可以是table和view


5.truncate和delete只删除数据,而drop则删除整个表(结构和数据)


6.truncate与不带where的delete:只删除数据,而不删除表的结构(定义)drop语句将删除表的结构被依赖的约束(constrain),触发器(trigger)索引(index);依赖于该表的存储过程/函数将被保留,但其状态会变为:invalid.


201.索引的工作原理及其种类


数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询,更新数据库表中数据。索引的实现通常使用B树以其变种B+树。


在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。


为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)


202.连接的种类


203.数据库优化的思路


204.存储过程与触发器的区别


205.悲观锁和乐观锁是什么?


206.你常用的mysql引擎有哪些?各引擎间有什么区别?


Redis


207.Redis宕机怎么解决?


宕机:服务器停止服务‘


如果只有一台redis,肯定 会造成数据丢失,无法挽救


多台redis或者是redis集群,宕机则需要分为在主从模式下区分来看:


slave从redis宕机,配置主从复制的时候才配置从的redis,从的会从主的redis中读取主的redis的操作日志1,在redis中从库重新启动后会自动加入到主从架构中,自动完成同步数据;


2, 如果从数据库实现了持久化,此时千万不要立马重启服务,否则可能会造成数据丢失,正确的操作如下:在slave数据上执行SLAVEOF ON ONE,来断开主从关系并把slave升级为主库,此时重新启动主数据库,执行SLAVEOF,把它设置为从库,连接到主的redis上面做主从复制,自动备份数据。


以上过程很容易配置错误,可以使用redis提供的哨兵机制来简化上面的操作。简单的方法:redis的哨兵(sentinel)的功能


208.redis和mecached的区别,以及使用场景


区别


1、redis和Memcache都是将数据存放在内存中,都是内存数据库。不过memcache还可以用于缓存其他东西,例如图片,视频等等


2、Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储


3、虚拟内存-redis当物流内存用完时,可以将一些很久没用的value交换到磁盘


4、过期策略-memcache在set时就指定,例如set key1 0 0 8,即永不过期。Redis可以通过例如expire设定,例如expire name 10


5、分布式-设定memcache集群,利用magent做一主多从,redis可以做一主多从。都可以一主一丛


6、存储数据安全-memcache挂掉后,数据没了,redis可以定期保存到磁盘(持久化)


7、灾难恢复-memcache挂掉后,数据不可恢复,redis数据丢失后可以通过aof恢复


8、Redis支持数据的备份,即master-slave模式的数据备份


9、应用场景不一样,redis除了作为NoSQL数据库使用外,还能用做消息队列,数据堆栈和数据缓存等;Memcache适合于缓存SQL语句,数据集,用户临时性数据,延迟查询数据和session等


使用场景


1,如果有持久方面的需求或对数据类型和处理有要求的应该选择redis


2,如果简单的key/value存储应该选择memcached.


209.Redis集群方案该怎么做?都有哪些方案?


1,codis


目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数量改变情况下,旧节点数据客恢复到新hash节点


2redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。具体看官方介绍


3.在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的替代算法方案,数据震荡后的字典脚本恢复,实例的监控,等等


210.Redis回收进程是如何工作的


一个客户端运行了新的命令,添加了新的数据。


redis检查内存使用情况,如果大于maxmemory的限制,则根据设定好的策略进行回收。


一个新的命令被执行等等,所以我们不断地穿越内存限制的边界,通过不断达到边界然后不断回收回到边界以下。


如果一个命令的结果导致大量内存被使用(例如很大的集合的交集保存到一个新的键),不用多久内存限制就会被这个内存使用量超越。


MongoDB


211.MongoDB中对多条记录做更新操作命令是什么?


212.MongoDB如何才会拓展到多个shard里?


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
关系型数据库 MySQL 数据库连接
python脚本:连接数据库,检查直播流是否可用
【10月更文挑战第13天】本脚本使用 `mysql-connector-python` 连接MySQL数据库,检查 `live_streams` 表中每个直播流URL的可用性。通过 `requests` 库发送HTTP请求,输出每个URL的检查结果。需安装 `mysql-connector-python` 和 `requests` 库,并配置数据库连接参数。
136 68
|
9天前
|
存储 Java easyexcel
招行面试:100万级别数据的Excel,如何秒级导入到数据库?
本文由40岁老架构师尼恩撰写,分享了应对招商银行Java后端面试绝命12题的经验。文章详细介绍了如何通过系统化准备,在面试中展示强大的技术实力。针对百万级数据的Excel导入难题,尼恩推荐使用阿里巴巴开源的EasyExcel框架,并结合高性能分片读取、Disruptor队列缓冲和高并发批量写入的架构方案,实现高效的数据处理。此外,文章还提供了完整的代码示例和配置说明,帮助读者快速掌握相关技能。建议读者参考《尼恩Java面试宝典PDF》进行系统化刷题,提升面试竞争力。关注公众号【技术自由圈】可获取更多技术资源和指导。
|
26天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
181 15
|
2月前
|
架构师 数据库
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
数据库乐观锁是必知必会的技术栈,也是大厂面试高频,十分重要,本文解析数据库乐观锁。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
3月前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。
|
3月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
3月前
|
Web App开发 SQL 数据库
使用 Python 解析火狐浏览器的 SQLite3 数据库
本文介绍如何使用 Python 解析火狐浏览器的 SQLite3 数据库,包括书签、历史记录和下载记录等。通过安装 Python 和 SQLite3,定位火狐数据库文件路径,编写 Python 脚本连接数据库并执行 SQL 查询,最终输出最近访问的网站历史记录。
52 4
|
3月前
|
SQL 机器学习/深度学习 数据采集
SQL与Python集成:数据库操作无缝衔接22.bijius.com
自动化数据预处理:使用Python库(如Pandas)自动清洗、转换和准备数据,为机器学习模型提供高质量输入。 实时数据处理:集成Apache Kafka或Amazon Kinesis等流处理系统,实现实时数据更新和分析。
|
3月前
|
SQL 机器学习/深度学习 数据库
SQL与Python集成:数据库操作无缝衔接
在开始之前,确保你已经安装了必要的Python库,如`sqlite3`(用于SQLite数据库)或`psycopg2`(用于PostgreSQL数据库)。这些库提供了Python与SQL数据库之间的接口。