用 Python 帮财务小妹对比 Excel,小妹这次破防了。。。

简介: 用 Python 帮财务小妹对比 Excel,小妹这次破防了。。。

财务小妹的需求

由于工作当中经常需要对比前后两个Excel文件,文件内容比较多,人工肉眼对比太费劲,还容易出错,搞个Python小工具,会不会事半功倍




运行脚本,可以把前后两个 Excel 文件当中不同的内容数据展现出来,不同 sheet 页签表示不同的数据处理结果


微信图片_20220522123849.png

我们先导入两份测试数据,进行 old 和 new 的处理,注意数据中 account number 是唯一索引

old = pd.read_excel('sample-address-1.xlsx', 'Sheet1', na_values=['NA'])
new = pd.read_excel('sample-address-2.xlsx', 'Sheet1', na_values=['NA'])
old['version'] = "old"
new['version'] = "new"

微信图片_20220522123929.png


对于我们这个小工具,主要考虑三种变化类型

  • 哪些是新增的 account
  • 哪些是被删除的 account
  • 哪些是被修改的 account


对于新增和删除的 account,我们可以直接用两份数据相减即可

old_accts_all = set(old['account number'])
new_accts_all = set(new['account number'])
dropped_accts = old_accts_all - new_accts_all
added_accts = new_accts_all - old_accts_all

微信图片_20220522124009.png


接下来我们再讲所有的数据拼接到一起,并使用 drop_duplicates 来保留被修改的数据

all_data = pd.concat([old,new],ignore_index=True)
changes = all_data.drop_duplicates(subset=["account number",
                                           "name", "street",
                                           "city","state",
                                           "postal code"], keep='last')

微信图片_20220522124043.png


接下来,我们需要找出哪些 account 有重复的条目,重复的 account 表明更改了我们需要标记的字段中的值。我们可以使用重复函数来获取所有这些 account 的列表,并仅过滤掉那些重复的 account

dupe_accts = changes[changes['account number'].duplicated() == True]['account number'].tolist()
dupes = changes[changes["account number"].isin(dupe_accts)]dupe_accts = changes[changes['account number'].duplicated() == True]['account number'].tolist()dupes = changes[changes["account number"].isin(dupe_accts)]

微信图片_20220522124140.png

现在我们将旧数据和新数据进行拆分,删除不必要的版本列并将 account 设置为索引

change_new = dupes[(dupes["version"] == "new")]
change_old = dupes[(dupes["version"] == "old")]
change_new = change_new.drop(['version'], axis=1)
change_old = change_old.drop(['version'], axis=1)
change_new.set_index('account number', inplace=True)
change_old.set_index('account number', inplace=True)
df_all_changes = pd.concat([change_old, change_new],
                            axis='columns',
                            keys=['old', 'new'],
                            join='outer')
df_all_changes

微信图片_20220522124145.png

接下来我们定义一个函数来展示从一列到另一列的变化

def report_diff(x):
    return x[0] if x[0] == x[1] else '{} ---> {}'.format(*x)def report_diff(x):    return x[0] if x[0] == x[1] else '{} ---> {}'.format(*x)

现在使用 swaplevel 函数来获取彼此相邻的旧列和新列

微信图片_20220522124256.png


最后我们使用 groupby 然后应用我们自定义 report_diff 函数将两个相应的列相互比较

df_changed = df_all_changes.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))
df_changed = df_changed.reset_index()df_changed = df_all_changes.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))df_changed = df_changed.reset_index()

微信图片_20220522124447.png

接下来我们需要找出被删除和新增的数据

df_removed = changes[changes["account number"].isin(dropped_accts)]
df_added = changes[changes["account number"].isin(added_accts)]df_removed = changes[changes["account number"].isin(dropped_accts)]df_added = changes[changes["account number"].isin(added_accts)]

我们可以使用单独的选项卡将所有内容输出到 Excel 文件,对应于更改、添加和删除


output_columns = ["account number", "name", "street", "city", "state", "postal code"]
writer = pd.ExcelWriter("my-diff.xlsx")
df_changed.to_excel(writer,"changed", index=False, columns=output_columns)
df_removed.to_excel(writer,"removed",index=False, columns=output_columns)
df_added.to_excel(writer,"added",index=False, columns=output_columns)
writer.save()

最后,我们就得到了最开始的效果图片展示的一个新的 Excel 文件


当然上面的代码对于毫无编程的人来说还是有一点点复杂,我们还是做成 GUI 小程序吧,这次我们使用 Tkinter 来编写 GUI 程序


我们首先导入 Tkinter 库并进行初始化

import tkinter
from tkinter import *
from tkinter import Label, Button, Entry, messagebox
from tkinter import filedialog
from deal import deal_excel
window = tkinter.Tk()
path_file1 = StringVar()
path_file2 = StringVar()
path_path = StringVar()
window.geometry('380x150')

这里我们定义了三个 String 类型的变量,用来保存文件地址和文件夹路径


然后我们进行简单的页面排版,只需要用到 Label,Entry 和 Button 就够了

label1 = Label(window, text="文件1:").grid(column=0, row=0)
txt1 = Entry(window, width="30", textvariable=path_file1).grid(column=1, row=0)
button1 = Button(window, text="文件选择1", command=selectFile1).grid(column=2, row=0)
label2 = Label(window, text="文件2:").grid(column=0, row=1)
txt2 = Entry(window, width="30", textvariable=path_file2).grid(column=1, row=1)
button2 = Button(window, text="文件选择2", command=selectFile2).grid(row=1, column=2)
label3 = Label(window, text="新文件路径:").grid(column=0, row=2)
txt3 = Entry(window, width="30", textvariable=path_path)
txt3.grid(column=1, row=2)
button3 = Button(window, text="新文件路径", command=selectPath).grid(row=2, column=2)
button4 = Button(window, text="开始处理", command=save_path).grid(row=3, column=1)

微信图片_20220522124643.png


用于获取文件和文件夹的函数

def selectFile1():
    path_ = filedialog.askopenfilename()
    path_file1.set(path_)

用于保存新生成文件和提示消息的函数

def save_path():
    path = txt3.get()
    deal_excel(path)
    res = "对比处理完成!"
    messagebox.showinfo('萝卜大杂烩', res)

这样,一个简单的 Excel 对比工具就完成啦

微信图片_20220522124736.png

相关文章
|
3月前
|
Python
Python办公自动化:xlwings对Excel进行分类汇总
Python办公自动化:xlwings对Excel进行分类汇总
96 1
|
3月前
|
Python
Python自动化:xlwings合并Excel
Python自动化:xlwings合并Excel
63 0
|
29天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
84 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
2月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
62 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
1月前
|
存储 数据可视化 Python
使用Python实现个人财务管理工具
本文介绍如何使用Python实现一个简单的个人财务管理工具,包括记录支出和收入、生成财务报告和数据可视化等功能。通过命令行界面输入数据,计算总支出、总收入和净收入,并使用Matplotlib库进行数据可视化。
|
2月前
|
Python
python读写操作excel日志
主要是读写操作,创建表格
64 2
|
2月前
|
Python
Python 自动化操作 Excel - 02 - xlwt
Python 自动化操作 Excel - 02 - xlwt
42 14
|
2月前
|
Python
Python 自动化操作 Excel - 03 - xlutils
Python 自动化操作 Excel - 03 - xlutils
36 13
|
2月前
|
数据处理 Python
Python 高级技巧:深入解析读取 Excel 文件的多种方法
在数据分析中,从 Excel 文件读取数据是常见需求。本文介绍了使用 Python 的三个库:`pandas`、`openpyxl` 和 `xlrd` 来高效处理 Excel 文件的方法。`pandas` 提供了简洁的接口,而 `openpyxl` 和 `xlrd` 则针对不同版本的 Excel 文件格式提供了详细的数据读取和处理功能。此外,还介绍了如何处理复杂格式(如合并单元格)和进行性能优化(如分块读取)。通过这些技巧,可以轻松应对各种 Excel 数据处理任务。
232 16
|
2月前
|
Python
Python 自动化操作 Excel - 01 - xlrd
Python 自动化操作 Excel - 01 - xlrd
38 9