基于LSTM的美国大选的新闻真假分类【NLP 新年开胃菜】

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 基于LSTM的美国大选的新闻真假分类【NLP 新年开胃菜】

简介


新闻媒体已成为向世界人民传递世界上正在发生的事情的信息的渠道。 人们通常认为新闻中传达的一切都是真实的。 在某些情况下,甚至新闻频道也承认他们的新闻不如他们写的那样真实。 但是,一些新闻不仅对人民或政府产生重大影响,而且对经济也产生重大影响。 一则新闻可以根据人们的情绪和政治局势上下移动曲线。

从真实的真实新闻中识别虚假新闻非常重要。 该问题已通过自然语言处理工具解决并得到了解决,本篇文章可帮助我们根据历史数据识别假新闻或真实新闻。


问题描述


对于印刷媒体和数字媒体,信息的真实性已成为影响企业和社会的长期问题。在社交网络上,信息传播的范围和影响以如此快的速度发生,并且如此迅速地放大,以至于失真,不准确或虚假的信息具有巨大的潜力,可在数分钟内对数百万用户造成现实世界的影响。最近,人们表达了对该问题的一些担忧,并提出了一些缓解该问题的方法。


在各种信息广播的整个历史中,一直存在着不那么精确的引人注目和引人入胜的新闻标题,这些新闻标题旨在吸引观众的注意力来出售信息。但是,在社交网站上,信息传播的范围和影响得到了显着放大,并且发展速度如此之快,以至于失真,不准确或虚假的信息具有巨大的潜力,可在数分钟内为数百万的用户带来真正的影响。


目标


我们唯一的目标是将数据集中的新闻分类为假新闻或真实新闻。


新闻的细致EDA


选择并建立强大的分类模型


代码链接:


100.png


https://github.com/yanqiangmiffy/quincy-python-v2/blob/master/Python038-%E5%9F%BA%E4%BA%8ELSTM%E7%9A%84%E7%BE%8E%E5%9B%BD%E5%A4%A7%E9%80%89%E7%9A%84%E6%96%B0%E9%97%BB%E7%9C%9F%E5%81%87%E5%88%86%E7%B1%BB%E3%80%90NLP%20%E6%96%B0%E5%B9%B4%E5%BC%80%E8%83%83%E8%8F%9C%E3%80%91.ipynb


相关文章
|
自然语言处理 数据挖掘 语音技术
自然语言处理的分类
自然语言处理的分类
126 1
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch应用实战六:利用LSTM实现文本情感分类
PyTorch应用实战六:利用LSTM实现文本情感分类
307 0
|
6月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP-新闻文本分类】处理新闻文本分类所有开源解决方案汇总
汇总了多个用于新闻文本分类的开源解决方案,包括TextCNN、Bert、LSTM、CNN、Transformer以及多模型融合方法。
56 1
|
4月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
77 1
|
4月前
|
机器学习/深度学习 数据采集 监控
【NLP-新闻文本分类】2特征工程
本文讨论了特征工程的重要性和处理流程,强调了特征工程在机器学习中的关键作用,并概述了特征工程的步骤,包括数据预处理、特征提取、特征处理、特征选择和特征监控。
33 1
|
4月前
|
数据采集 自然语言处理 数据挖掘
【NLP-新闻文本分类】1 数据分析和探索
文章提供了新闻文本分类数据集的分析,包括数据预览、类型检查、缺失值分析、分布情况,指出了类别不均衡和句子长度差异等问题,并提出了预处理建议。
55 1
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
46 0
|
4月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
44 0
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
53 0

热门文章

最新文章