贷款违约预测-Task2 数据分析(下)

简介: 贷款违约预测-Task2 数据分析(下)

2.3.6 变量分布可视化

单一变量分布可视化


plt.figure(figsize=(8, 8))
sns.barplot(data_train["employmentLength"].value_counts(dropna=False)[:20],
            data_train["employmentLength"].value_counts(dropna=False).keys()[:20])
plt.show()


103.png

png


根绝y值不同可视化x某个特征的分布


  • 首先查看类别型变量在不同y值上的分布


train_loan_fr = data_train.loc[data_train['isDefault'] == 1]
train_loan_nofr = data_train.loc[data_train['isDefault'] == 0]


fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 8))
train_loan_fr.groupby('grade')['grade'].count().plot(kind='barh', ax=ax1, title='Count of grade fraud')
train_loan_nofr.groupby('grade')['grade'].count().plot(kind='barh', ax=ax2, title='Count of grade non-fraud')
train_loan_fr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh', ax=ax3, title='Count of employmentLength fraud')
train_loan_nofr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh', ax=ax4, title='Count of employmentLength non-fraud')
plt.show()


102.png

png


  • 其次查看连续型变量在不同y值上的分布


fig, ((ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 6))
data_train.loc[data_train['isDefault'] == 1] \
    ['loanAmnt'].apply(np.log) \
    .plot(kind='hist',
          bins=100,
          title='Log Loan Amt - Fraud',
          color='r',
          xlim=(-3, 10),
         ax= ax1)
data_train.loc[data_train['isDefault'] == 0] \
    ['loanAmnt'].apply(np.log) \
    .plot(kind='hist',
          bins=100,
          title='Log Loan Amt - Not Fraud',
          color='b',
          xlim=(-3, 10),
         ax=ax2)


<matplotlib.axes._subplots.AxesSubplot at 0x126a44b50>


101.png

png


total = len(data_train)
total_amt = data_train.groupby(['isDefault'])['loanAmnt'].sum().sum()
plt.figure(figsize=(12,5))
plt.subplot(121)##1代表行,2代表列,所以一共有2个图,1代表此时绘制第一个图。
plot_tr = sns.countplot(x='isDefault',data=data_train)#data_train‘isDefault’这个特征每种类别的数量**
plot_tr.set_title("Fraud Loan Distribution \n 0: good user | 1: bad user", fontsize=14)
plot_tr.set_xlabel("Is fraud by count", fontsize=16)
plot_tr.set_ylabel('Count', fontsize=16)
for p in plot_tr.patches:
    height = p.get_height()
    plot_tr.text(p.get_x()+p.get_width()/2.,
            height + 3,
            '{:1.2f}%'.format(height/total*100),
            ha="center", fontsize=15) 
percent_amt = (data_train.groupby(['isDefault'])['loanAmnt'].sum())
percent_amt = percent_amt.reset_index()
plt.subplot(122)
plot_tr_2 = sns.barplot(x='isDefault', y='loanAmnt',  dodge=True, data=percent_amt)
plot_tr_2.set_title("Total Amount in loanAmnt  \n 0: good user | 1: bad user", fontsize=14)
plot_tr_2.set_xlabel("Is fraud by percent", fontsize=16)
plot_tr_2.set_ylabel('Total Loan Amount Scalar', fontsize=16)
for p in plot_tr_2.patches:
    height = p.get_height()
    plot_tr_2.text(p.get_x()+p.get_width()/2.,
            height + 3,
            '{:1.2f}%'.format(height/total_amt * 100),
            ha="center", fontsize=15)


100.png

png


2.3.6 时间格式数据处理及查看


#转化成时间格式  issueDateDT特征表示数据日期离数据集中日期最早的日期(2007-06-01)的天数
data_train['issueDate'] = pd.to_datetime(data_train['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
data_train['issueDateDT'] = data_train['issueDate'].apply(lambda x: x-startdate).dt.days


#转化成时间格式
data_test_a['issueDate'] = pd.to_datetime(data_train['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
data_test_a['issueDateDT'] = data_test_a['issueDate'].apply(lambda x: x-startdate).dt.days


plt.hist(data_train['issueDateDT'], label='train');
plt.hist(data_test_a['issueDateDT'], label='test');
plt.legend();
plt.title('Distribution of issueDateDT dates');
#train 和 test issueDateDT 日期有重叠 所以使用基于时间的分割进行验证是不明智的


20.png

png


2.3.7 掌握透视图可以让我们更好的了解数据


#透视图 索引可以有多个,“columns(列)”是可选的,聚合函数aggfunc最后是被应用到了变量“values”中你所列举的项目上。
pivot = pd.pivot_table(data_train, index=['grade'], columns=['issueDateDT'], values=['loanAmnt'], aggfunc=np.sum)


pivot


</div><div>.dataframe tbody tr th:only-of-type {</div><div>vertical-align: middle;</div><div>}</div><div><em></em></div><div data-card-type="block" data-ready-card="codeblock" data-card-value="data:%7B%22mode%22%3A%22plain%22%2C%22code%22%3A%22.dataframe%20tbody%20tr%20th%20%7B%5Cn%20%20%20%20vertical-align%3A%20top%3B%5Cn%7D%5Cn.dataframe%20thead%20tr%20th%20%7B%5Cn%20%20%20%20text-align%3A%20left%3B%5Cn%7D%5Cn.dataframe%20thead%20tr%3Alast-of-type%20th%20%7B%5Cn%20%20%20%20text-align%3A%20right%3B%5Cn%7D%22%2C%22id%22%3A%228dvzf%22%7D"></div><div><br /></div><div>

loanAmnt
issueDateDT 0 30 61 92 122 153 183 214 245 274 ... 3926 3957 3987 4018 4048 4079 4110 4140 4171 4201
grade
A NaN 53650.0 42000.0 19500.0 34425.0 63950.0 43500.0 168825.0 85600.0 101825.0 ... 13093850.0 11757325.0 11945975.0 9144000.0 7977650.0 6888900.0 5109800.0 3919275.0 2694025.0 2245625.0
B NaN 13000.0 24000.0 32125.0 7025.0 95750.0 164300.0 303175.0 434425.0 538450.0 ... 16863100.0 17275175.0 16217500.0 11431350.0 8967750.0 7572725.0 4884600.0 4329400.0 3922575.0 3257100.0
C NaN 68750.0 8175.0 10000.0 61800.0 52550.0 175375.0 151100.0 243725.0 393150.0 ... 17502375.0 17471500.0 16111225.0 11973675.0 10184450.0 7765000.0 5354450.0 4552600.0 2870050.0 2246250.0
D NaN NaN 5500.0 2850.0 28625.0 NaN 167975.0 171325.0 192900.0 269325.0 ... 11403075.0 10964150.0 10747675.0 7082050.0 7189625.0 5195700.0 3455175.0 3038500.0 2452375.0 1771750.0
E 7500.0 NaN 10000.0 NaN 17975.0 1500.0 94375.0 116450.0 42000.0 139775.0 ... 3983050.0 3410125.0 3107150.0 2341825.0 2225675.0 1643675.0 1091025.0 1131625.0 883950.0 802425.0
F NaN NaN 31250.0 2125.0 NaN NaN NaN 49000.0 27000.0 43000.0 ... 1074175.0 868925.0 761675.0 685325.0 665750.0 685200.0 316700.0 315075.0 72300.0 NaN
G NaN NaN NaN NaN NaN NaN NaN 24625.0 NaN NaN ... 56100.0 243275.0 224825.0 64050.0 198575.0 245825.0 53125.0 23750.0 25100.0 1000.0

7 rows × 139 columns


2.3.8 用pandas_profiling生成数据报告


import pandas_profiling


pfr = pandas_profiling.ProfileReport(data_train)
pfr.to_file("./example.html")


2.4 总结


数据探索性分析是我们初步了解数据,熟悉数据为特征工程做准备的阶段,甚至很多时候EDA阶段提取出来的特征可以直接当作规则来用。可见EDA的重要性,这个阶段的主要工作还是借助于各个简单的统计量来对数据整体的了解,分析各个类型变量相互之间的关系,以及用合适的图形可视化出来直观观察。希望本节内容能给初学者带来帮助,更期待各位学习者对其中的不足提出建议。

相关文章
|
机器学习/深度学习 存储 数据采集
数据分析案例-基于多元线性回归算法预测学生期末成绩
数据分析案例-基于多元线性回归算法预测学生期末成绩
1304 0
数据分析案例-基于多元线性回归算法预测学生期末成绩
|
1月前
|
数据可视化 数据挖掘 数据处理
零基础入门金融风控之贷款违约预测的Task2:数据分析
零基础入门金融风控之贷款违约预测的Task2:数据分析
36 1
|
3月前
|
机器学习/深度学习 数据可视化 算法
【Python支持向量机】Python客户银行贷款支持向量机数据分析可视化SVM(源码+数据集+报告)【独一无二】
【Python支持向量机】Python客户银行贷款支持向量机数据分析可视化SVM(源码+数据集+报告)【独一无二】
|
机器学习/深度学习 数据采集 数据可视化
【DSW Gallery】数据分析经典案例:Kaggle竞赛之房价预测
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合JupyterLab Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。
【DSW Gallery】数据分析经典案例:Kaggle竞赛之房价预测
|
机器学习/深度学习 算法 数据挖掘
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(二)
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命
1157 2
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(二)
|
机器学习/深度学习 数据采集 存储
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(一)
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命
1788 0
数据分析案例-基于随机森林算法探索影响人类预期寿命的因素并预测人类预期寿命(一)
|
数据采集 数据可视化 数据挖掘
数据分析案例-旅游景点票价预测
数据分析案例-旅游景点票价预测
311 0
数据分析案例-旅游景点票价预测
|
数据采集 机器学习/深度学习 数据可视化
数据分析案例-二手车价格预测
数据分析案例-二手车价格预测
269 0
数据分析案例-二手车价格预测
|
数据挖掘 定位技术 Python
用对线阶段数据分析和预测《英雄联盟》的游戏结果
用对线阶段数据分析和预测《英雄联盟》的游戏结果
519 0
用对线阶段数据分析和预测《英雄联盟》的游戏结果
|
存储 机器学习/深度学习 SQL
见微知著,带你认认数据分析的大门,站在门口感受一下预测的魅力
预就是预先、事先,测就是度量、推测。预测通常被理解为对某些事物进行事先推测的过程。其实预测这个概念并不是我们第一次接触到,而是它从古至今都和我们的生活息息相关.而且在计算机技术飞速发展的DT时代,它一直伴随着我们,充斥着生活的方方面面,我们每个人都想更准确地预见未来,来掌握甚至改变事态的发展轨迹.所以用一句简单的话来概括就是:预测是一门研究未来的学问。从古至今都有人不断在研究它,应用它,而且研究的方法和理论也在不断地发展和完善,从古代的占卜术到如今的大数据和人工智能,预测的形式,方法,理论,技术,意义和作用发生了极大的变化.而且在数据科学的加持下,它建立于数据分析的基础上,预测不再是神秘的,而
843 3
下一篇
无影云桌面