复现 sci 顶刊中的 3D 密度函数图

简介: 最近在看一些关于贝叶斯深度学习在可靠性方向应用的文章,看到下面这篇文章,发表在可靠性方向顶刊的 ITR 中。

简介


最近在看一些关于贝叶斯深度学习在可靠性方向应用的文章,看到下面这篇文章,发表在可靠性方向顶刊的 ITR 中。

2GHM__D_PSJ`DDXALCE_MUE.png


ITR 期刊,可靠性领域顶刊


本文主要介绍:使用贝叶斯深度学习来预测产品剩余使用寿命,但是传统的深度学习方法只能得到未来时间点的估计值,并不能包含不确定性因素,而使用贝叶斯深度学习,最后可以得到未来时间点预测值的分布。

文中在模拟阶段给出了一个用 matlab 得到的 3D 密度函数图。

GR4K3Z8@D38GH09HKP@19G9.png


原文图形


主要目的:解释使用该方法预测出未来时间点对应剩余使用寿命(RUL)的分布,对应的点估计和真实值。可以看出,该方法点估计和真实值非常接近,并且还给出对应点的核密度函数。根据这个核密度函数你可以求出  的预测区间。

好像内容介绍太多了,本文不是文献解读😁。主要是复现这个图,那正式开始吧!


教程


对于这种 3D 的图形,ggplot2 包以及对应的拓展包好像不是很在行,但是也有一些教程可见:3D Plots with ggplot2 and Plotly[1]。这里我们主要使用 plot3D[2] 包中的 scatter3D 函数进行绘制,当然也可以尝试使用 Scatterplot3d[3] 包。

首先构造一些模拟数据作为例子。这里我们假设每个时间点的密度函数服从正态分布,均值分别为 1:5,标准差都为 1。颜色是自己比较喜欢的几种配色,参考小明的推文:R语言ggplot2画图一套好看的配色以及调整字体的简单小例子

mean1 = 1:5 # 刻画不同时间对应密度函数的均值
len = 1000
col = c("#02B1e6", "#E81D22", "#F9BC15", "#8015f9", "#20e81d", "#e64602")
x <- seq(-5,10, length = len)
y <- seq(1,5, length = 5)
z = matrix(NA,length(x),5)
for(i in 1:length(mean1)){
  z[,i] = dnorm(x,mean1[i],1)
}


之后使用 scatter3D 函数构建一个空的三维箱子(alpha=0)。这个函数前三个参数分别对应 x,y,z 坐标,bty(boxtype)表示箱子的类型,这里使用类似文献中的形式,之后我们将展示其他形式。phi,theta 主要是对上下角度和左右角度进行调整,ticktype = "detailed"将坐标轴详细展现出来。

如果你对其他参数感兴趣,可以参见这篇教程:Impressive package for 3D and 4D graph - R software and data visualization[4]

scatter3D(x, rep(1,len), z[,1], bty = "b2",colkey = FALSE,
          phi = 14,theta = 45,
          pch = 18,alpha = 0,ticktype = "detailed", expand =0.5,
          ylim = c(1,5),zlim = c(0,0.5),
          xlab = "RUL(10s)", ylab = "Time(10s)", zlab = "Kernel Distribution"
)

KC7Z1HWOOCZ[XMH03%7WZ@N.png


构建空框架


之后就是使用参数内部的add = TRUE 加入各个密度函数图以及点估计。

for(i in 1:length(mean1)){
  scatter3D(x, rep(i,len), z[,i], add = TRUE,type ='l', col = col[i], pch = 16)
  scatter3D(x[which.max(z[,i])], y[i], 0 , add = TRUE, type ='h', col = col[i], pch = 16)
}

K[UKB`~LH%C{N$UH$6Z4BOQ.png


添加密度函数和点估计


这时基本得到了与文献中类似的 3D 密度函数图啦!真实值也可以在循环中加入,这里就不再进行啦。


如果你想换一种箱子风格可以调整 bty 参数,例如:bty = "g" , bty = "f"等。

image.gifbty = "g"P}XMCO16)Y@V`J``0Y258YU.png

目录
相关文章
|
SQL 消息中间件 分布式计算
Hive 中级练习题(40题 待更新)
Hive 中级练习题(40题 待更新)
|
数据采集 小程序 数据可视化
策略篇1:消费者运营是什么? 解读产品Quick Audience | 《零售数据中台通关指南》
本篇主要介绍了全域营销典型场景和全域营销解决方案。
策略篇1:消费者运营是什么? 解读产品Quick Audience | 《零售数据中台通关指南》
|
存储 Java API
写给大忙人看的 - Java中从MinIO服务器中下载文件(3)
前面两章介绍了 MinIO 文件服务器的环境搭建,以及在 Java 中上传文件至 MinIO 文件服务器中,现在,一起来看下如何从 MinIO 文件服务器中下载文件吧
2448 0
|
数据可视化 定位技术 Python
【100天精通Python】Day68:Python可视化_Matplotlib 绘制热力图,示例+代码
【100天精通Python】Day68:Python可视化_Matplotlib 绘制热力图,示例+代码
2782 0
vep视频翻录为mp4(支持大黄蜂云课堂6.05)
今天教大家怎么翻录大黄蜂vep视频,支持大黄蜂云课堂6.05的最新版。 教程很简单,大家跟着自己尝试下即可。
4832 0
vep视频翻录为mp4(支持大黄蜂云课堂6.05)
真正解决办法:FTP 执行命令时500 Illegal PORT command
真正解决办法:FTP 执行命令时500 Illegal PORT command
3275 0
|
6月前
|
机器学习/深度学习 人工智能 数据可视化
智谱AI新突破!GLM-Z1-Rumination:新一代沉思模型,推动AI助手进入"高智商+高自主"的新阶段
GLM-Z1-Rumination是智谱推出的新一代沉思模型,通过扩展强化学习训练实现长程推理能力,支持动态工具调用与自我验证机制,显著提升AI自主研究能力。
313 13
智谱AI新突破!GLM-Z1-Rumination:新一代沉思模型,推动AI助手进入"高智商+高自主"的新阶段
|
算法 网络协议 数据安全/隐私保护
NTP网络时间同步协议详解
NTP协议是互联网上用于同步计算机时间的标准,它利用分布式时间服务器网络,通过分层管理和本地路由算法确保时间的准确性。协议涉及时间偏差、延迟和差量三个概念,用于测量与参考时钟的同步状态。基本NTP数据包包含48字节,如头部和时间戳,关键字段如跳跃指示器(LI)、版本号(VN)、模式(Mode)、层次(Stratum)等影响同步过程。协议还包括时间戳以记录不同阶段的时间点。NTP认证可选,用于数据安全。
NTP网络时间同步协议详解
IDEA——untrusted server's certificate
IDEA——untrusted server's certificate
327 0