算法必知 --- LFU缓存淘汰算法

简介: 算法必知 --- LFU缓存淘汰算法

写在前



LRU缓存机制(Least Recently Used)(看时间)


  • 在缓存满的时候,删除缓存里最久未使用的数据,然后再放入新元素;
  • 数据的访问时间很重要,访问时间距离现在越近,就越不容易被删除;
  • 就是喜新厌旧,淘汰在缓存里呆的时间最久的元素。在删除元素的时候,只看「时间」这一个维度。


LFU缓存机制(Least Frequently Used)(看访问次数)


  • 在缓存满的时候,删除缓存里使用次数最少的元素,然后在缓存中放入新元素;
  • 数据的访问次数很重要,访问次数越多,就越不容易被删除,即淘汰访问次数最少的
  • 核心思想:先考虑访问次数,在访问次数相同的情况下,再考虑缓存的时间。


算法描述



请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。


实现 LFUCache 类:


  • LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
  • int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1。
  • void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。


注意「项的使用次数」就是自插入该项以来对其调用 get 和 put 函数的次数之和。使用次数会在对应项被移除后置为 0 。


为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。


当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。


注意哦,get 和 put 方法必须都是 O(1) 的时间复杂度!


示例

输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lFUCache = new LFUCache(2);
lFUCache.put(1, 1);   // cache=[1,_], cnt(1)=1
lFUCache.put(2, 2);   // cache=[2,1], cnt(2)=1, cnt(1)=1
lFUCache.get(1);      // 返回 1
                      // cache=[1,2], cnt(2)=1, cnt(1)=2
lFUCache.put(3, 3);   // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
                      // cache=[3,1], cnt(3)=1, cnt(1)=2
lFUCache.get(2);      // 返回 -1(未找到)
lFUCache.get(3);      // 返回 3
                      // cache=[3,1], cnt(3)=2, cnt(1)=2
lFUCache.put(4, 4);   // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
                      // cache=[4,3], cnt(4)=1, cnt(3)=2
lFUCache.get(1);      // 返回 -1(未找到)
lFUCache.get(3);      // 返回 3
                      // cache=[3,4], cnt(4)=1, cnt(3)=3
lFUCache.get(4);      // 返回 4
                      // cache=[3,4], cnt(4)=2, cnt(3)=3


算法设计



首先需要维护一个链表,链表的结构如下。ps:注意是双端链表,图示有误,但意思明确,具体见代码。


image.png


注意:


  • 首先我们在LRU中定义两个永久节点,head作为头节点、tail作为尾节点,就作为了我们链表的头节点和尾节点。我们插入的每一个缓存都是链表中的一个Node节点。
  • 因为链表频数大的靠近head,频数小的靠近tail。这种情况实际上是将我们的链表按照频数划分成了不同的区域如下图


image.png


算法需要实现的三个操作:


  • 新增节点:如果新增节点的频数为1,所以我们需要找到当前链表频数为1的部分的第一个节点(头结点),在他前面插入新元素(如果不存在频数为1那么就是在tail节点前插入)
  • 修改节点(删除+移动):首先需要将节点的值进行修改这个很简单,然后就是移动节点在链表中的位置了,假设节点的频数为 a ,那么节点首先需要从频数为a的区域中删除,这就分为了以下几种情况:
  • 频数为a的区域只有一个节点,那么a节点频数修改后,频数为a的区域将会消失(注意这个说法,后面会讲实现),然后将当前暂时从链表中移除
  • 频数为a的区域的头节点是当前节点,那么将频数为a的节点的头节点改为当前节点的后一个元素即可,然后将当前节点暂时从链表中移除
  • 频数为a的区域的头节点不是当前节点,那么直接将当前节点暂时从频数为a的区域删除即可。
  • 从频数为a的区域删除后,下面一步就是插入到频数为a+1的区域的头部
  • 频数为a+1的区域不存在,那么将当前节点插入到上一步更新后的频数为a的头节点的前面即可
  • 频数为a+1的区域存在,直接插入到频数为a+1的区域的头部即可
  • 删除节点:因为tail节点的前一个就是我们使用次数最少且最不常使用的缓存,我们直接删除tail节点的前一个节点即可,单数删除的时候需要注意。假设需要删除的节点的频数为a,这个操作相当于将指定节点从频数为a的区域删除,这和我们修改阶段的第一步是类似的。


总结:上述算法实现的重点,如何获得频数为a的区域的头节点(使用一个Map来维护链表中频数为a的区域的头节点)


代码实现



  • 首先定义双端链表类(包括数据和记录前驱/后继节点的指针

class DLinkedNode {
    int key;
    int value;
    // 记录当前key被调用的次数
    int count;
    DLinkedNode pre;
    DLinkedNode next;
    public DLinkedNode() {};
    public DLinkedNode(int key, int value) {
        this.key = key;
        this.value = value;
        this.count = count;
    }
}


  • 双向链表需要提供一些接口api,便于我们操作,主要就是链表的一些操作,画图理解!

private void renewNode(DLinkedNode node) {
    int oldCnt = node.count;
    int newCnt = oldCnt + 1;
    DLinkedNode next = null;
    if (cntMap.get(oldCnt) == node) {
        //当前节点是oldCnt频数的头结点(两种情况:还有其他节点/只有一个节点)
        // 更新oldCnt频数头结点的映射
        if (node.next.count == node.count) {
            cntMap.put(oldCnt, node.next);
        } else {
            cntMap.remove(oldCnt);
        }
        // 更新newCnt频数头结点的映射(不存在直接加入,存在找到对应频数的头结点)
        if (cntMap.get(newCnt) == null) {
            cntMap.put(newCnt, node);
            node.count++;
            return;
        } else {
            removeFromList(node);
            next = cntMap.get(newCnt);
        }
    } else {
        // 当前节点不是某个频数的头结点(我们不需要维护频数头结点的映射,直接找到对应频数的头结点即可)
        removeFromList(node);
        if (cntMap.get(newCnt) == null) {
            next = cntMap.get(oldCnt);
        } else {
            next = cntMap.get(newCnt);
        }
    }
    node.count++;
    cntMap.put(newCnt, node);
    // 插入节点(连接节点),其中next是频数的头结点
    insertToList(node, next);
}
private void removeFromList(DLinkedNode node) {
    node.pre.next = node.next;
    node.next.pre = node.pre;
}
private void insertToList(DLinkedNode node, DLinkedNode next) {
    next.pre.next = node;
    node.pre = next.pre;
    node.next = next;
    next.pre = node;
}
// 缓存容量满了,删除一个最少且最久没使用的节点 
private void deleteCache() {
    DLinkedNode delNode = tail.pre;
    DLinkedNode pre = delNode.pre;
    if (cntMap.get(delNode.count) == delNode) {
        // 删除节点是某个频数的头结点
        cntMap.remove(delNode.count);
    }
    // 实际删除的节点
    pre.next = tail;
    tail.pre = pre;
    cache.remove(delNode.key);
    --size;
}


  • 确定LRU缓存类的成员变量(链表长度、缓存容量和map映射等)和构造函数。注意:定义虚拟头尾结点便于在头部插入元素或者寻找尾部元素!并在构造函数初始化。

// cnt - node : 增加了频数与头节点的映射
private Map<Integer, DLinkedNode> cntMap = new HashMap<>();
// key - node
private Map<Integer, DLinkedNode> cache = new HashMap<>();
// 缓存中目前存储的数据量
private int size;
private int capacity;
private DLinkedNode head, tail;
public LFUCache(int capacity) {
    this.size = 0;
    this.capacity = capacity;
    head = new DLinkedNode();
    tail = new DLinkedNode();
    head.next = tail;
    tail.pre = head;
}


  • 核心代码:get和put方法,都是先根据key获取这个映射,根据映射节点的情况(有无)进行操作。注意:
  • get和put都在使用,所以数据要提前!
  • put操作如果改变了双端链表长度(不是仅改变值),需要先判断是否达到最大容量!

public int get(int key) {
    DLinkedNode node = cache.get(key);
    if (capacity == 0 || node == null) {
        return -1;
    }
    // node节点的调用次数+1,应该更新他的位置
    renewNode(node);
    return node.value;
}
public void put(int key, int value) {
    if (capacity == 0) {
        return;
    }
    DLinkedNode node = cache.get(key);
    if (node != null) {
        node.value = value;
        // 将这个节点的频数cnt+1,更新位置
        renewNode(node);
    } else {
        if (cache.size() == capacity) {
            deleteCache();
            --size;
        }
        DLinkedNode newNode = new DLinkedNode(key, value, 1);
        DLinkedNode next = cntMap.get(1);
        if (next == null) {
            next = tail;
        }
        // 将新建的节点插入到链表,并更新映射
        insertToList(newNode, next);
        cntMap.put(1, newNode);
        cache.put(key, newNode);
        ++size;
    }
}


完整代码如下:

class LFUCache {
    class DLinkedNode {
        int key;
        int value;
        // 记录当前key被调用的次数(即node节点的频数)
        int count;
        DLinkedNode pre;
        DLinkedNode next;
        public DLinkedNode() {};
        public DLinkedNode(int key, int value, int count) {
            this.key = key;
            this.value = value;
            this.count = count;
        }
    }
    // cnt - node : 增加了频数与头节点的映射
    private Map<Integer, DLinkedNode> cntMap = new HashMap<>();
    // key - node
    private Map<Integer, DLinkedNode> cache = new HashMap<>();
    // 缓存中目前存储的数据量
    private int size;
    private int capacity;
    private DLinkedNode head, tail;
    public LFUCache(int capacity) {
        this.size = 0;
        this.capacity = capacity;
        head = new DLinkedNode();
        tail = new DLinkedNode();
        head.next = tail;
        tail.pre = head;
    }
    public int get(int key) {
        DLinkedNode node = cache.get(key);
        if (capacity == 0 || node == null) {
            return -1;
        }
        // node节点的调用次数+1,应该更新他的位置
        renewNode(node);
        return node.value;
    }
    public void put(int key, int value) {
        if (capacity == 0) {
            return;
        }
        DLinkedNode node = cache.get(key);
        if (node != null) {
            node.value = value;
            // 将这个节点的频数cnt+1,更新位置
            renewNode(node);
        } else {
            if (cache.size() == capacity) {
                deleteCache();
                --size;
            }
            DLinkedNode newNode = new DLinkedNode(key, value, 1);
            DLinkedNode next = cntMap.get(1);
            if (next == null) {
                next = tail;
            }
            // 将新建的节点插入到链表,并更新映射
            insertToList(newNode, next);
            cntMap.put(1, newNode);
            cache.put(key, newNode);
            ++size;
        }
    }
    private void renewNode(DLinkedNode node) {
        int oldCnt = node.count;
        int newCnt = oldCnt + 1;
        DLinkedNode next = null;
        if (cntMap.get(oldCnt) == node) {
            //当前节点是oldCnt频数的头结点(两种情况:还有其他节点/只有一个节点)
            // 更新oldCnt频数头结点的映射
            if (node.next.count == node.count) {
                cntMap.put(oldCnt, node.next);
            } else {
                cntMap.remove(oldCnt);
            }
            // 更新newCnt频数头结点的映射(不存在直接加入,存在找到对应频数的头结点)
            if (cntMap.get(newCnt) == null) {
                cntMap.put(newCnt, node);
                node.count++;
                return;
            } else {
                removeFromList(node);
                next = cntMap.get(newCnt);
            }
        } else {
            // 当前节点不是某个频数的头结点(我们不需要维护频数头结点的映射,直接找到对应频数的头结点即可)
            removeFromList(node);
            if (cntMap.get(newCnt) == null) {
                next = cntMap.get(oldCnt);
            } else {
                next = cntMap.get(newCnt);
            }
        }
        node.count++;
        cntMap.put(newCnt, node);
        // 插入节点(连接节点),其中next是频数的头结点
        insertToList(node, next);
    }
    private void removeFromList(DLinkedNode node) {
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }
    private void insertToList(DLinkedNode node, DLinkedNode next) {
        next.pre.next = node;
        node.pre = next.pre;
        node.next = next;
        next.pre = node;
    }
    // 缓存容量满了,删除一个最少且最久没使用的节点 
    private void deleteCache() {
        DLinkedNode delNode = tail.pre;
        DLinkedNode pre = delNode.pre;
        if (cntMap.get(delNode.count) == delNode) {
            // 删除节点是某个频数的头结点
            cntMap.remove(delNode.count);
        }
        // 实际删除的节点
        pre.next = tail;
        tail.pre = pre;
        cache.remove(delNode.key);
        --size;
    }
}


总结与补充



  • 上述代码在LRU基础上进行的。主要区别是:
  • 节点类中引入了count变量,记录key出现的频数
  • LFU成员变量中增加了cntMap:key的频数与这个频数区间头结点的映射
  • 注意:同样的,我们要注意维护cntMap映射和节点的频数
相关文章
|
1月前
|
存储 缓存 算法
缓存淘汰策略
缓存淘汰策略
40 0
|
1月前
|
缓存 算法 NoSQL
【分布式详解】一致性算法、全局唯一ID、分布式锁、分布式事务、 分布式缓存、分布式任务、分布式会话
分布式系统通过副本控制协议,使得从系统外部读取系统内部各个副本的数据在一定的约束条件下相同,称之为副本一致性(consistency)。副本一致性是针对分布式系统而言的,不是针对某一个副本而言。强一致性(strong consistency):任何时刻任何用户或节点都可以读到最近一次成功更新的副本数据。强一致性是程度最高的一致性要求,也是实践中最难以实现的一致性。单调一致性(monotonic consistency):任何时刻,任何用户一旦读到某个数据在某次更新后的值,这个用户不会再读到比这个值更旧的值。
470 0
|
18天前
|
存储 缓存 算法
数据结构和算法学习记录——总结顺序表和链表(双向带头循环链表)的优缺点、CPU高速缓存命中率
数据结构和算法学习记录——总结顺序表和链表(双向带头循环链表)的优缺点、CPU高速缓存命中率
16 0
|
1月前
|
缓存 监控 算法
软件体系结构 - 缓存技术(6)淘汰策略
【4月更文挑战第20天】软件体系结构 - 缓存技术(6)淘汰策略
103 12
|
1月前
|
存储 缓存 算法
面试遇到算法题:实现LRU缓存
V哥的这个实现的关键在于维护一个双向链表,它可以帮助我们快速地访问、更新和删除最近最少使用的节点,同时使用哈希表来提供快速的查找能力。这样,我们就可以在 O(1) 的时间复杂度内完成所有的缓存操作。哈哈干净利索,回答完毕。
|
1月前
|
缓存 算法 Java
淘汰算法
【4月更文挑战第21天】这篇内容介绍了两种主流的淘汰算法:LRU(Least Recently Used)和LFU(Least Frequently Used)。LRU基于最近最少使用原则,当缓存满时,淘汰最近最久未使用的键。实现上通常使用链表和Java的LinkedHashMap。而LFU根据访问次数淘汰最不常使用的对象,可以按访问频率排序并选择淘汰。LFU的变种可能关注一定时间窗口内的访问次数,实现上更复杂。
23 1
|
1月前
|
缓存 算法 Java
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
|
1月前
|
缓存 算法 前端开发
前端开发者必知的缓存淘汰策略:LRU算法解析与实践
前端开发者必知的缓存淘汰策略:LRU算法解析与实践
|
1月前
|
缓存 算法
LRU(Least Recently Used)算法是一种常用的计算机缓存替换算法
【5月更文挑战第4天】LRU算法是基于页面使用频率的缓存策略,优先淘汰最近最久未使用的页面。实现可采用双向链表或数组,前者灵活,后者时间复杂度低。优点是利用时间局部性提高命中率,简单易实现;缺点是占用空间,对循环访问和随机访问场景适应性不佳。
47 0
|
1月前
|
缓存 算法 Java
如何实现缓存与LRU算法以及惰性过期
如何实现缓存与LRU算法以及惰性过期
40 1