【数据结构与算法】十大经典排序(c语言&Java)(4)

简介: 【数据结构与算法】十大经典排序(c语言&Java)(4)

🍈 计数排序(Counting Sort)


image.png

简介:


计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。


设计思想:


找出待排序的数组中最大和最小的元素;

统计数组中每个值为i的元素出现的次数,存入数组C的第i项;

对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);

反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

代码实现:


c语言版


void CountingSort(int *A, int *B, int n, int k)  
{  
    int *C = (int *)malloc(sizeof(int) * (k + 1));  
    int i;  
    for (i = 0; i <= k; i++) {  
        C[i] = 0;  
    }  
    for (i = 0; i < n; i++) {  
        C[A[i]]++;  
    }  
    for (i = 1; i <= k; i++) {  
        C[i] = C[i] + C[i - 1];  
    }  
    for (i = n - 1; i >= 0; i--) {  
        B[C[A[i]] - 1] = A[i];  
        C[A[i]]--;  
    }  
}  


Java版

  /**
   * 计数排序
   * @param array
   * @return
     * @date 2022/01/20
   */
  public static int[] countingSort(int[] array){
    if(array.length == 0){
      return array;
    }
    int bias ,min = array[0],max = array[0];
    //找出最小值和最大值
    for(int i = 0;i < array.length;i++){
      if(array[i] < min){
        min = array[i];
      }
      if(array[i] > max){
        max = array[i];
      }
    }
    //偏差
    bias = 0 - min;
    //新开辟一个数组
    int[] bucket = new int[max - min +1];
    //数据初始化为0
    Arrays.fill(bucket, 0);
    for(int i = 0;i < array.length;i++){
      bucket[array[i] + bias] += 1;
    }
    int index = 0;
    for(int i = 0;i < bucket.length;i++){
      int len = bucket[i];
      while(len > 0){
        array[index++] = i - bias;
        len --;
      }   
    }
    return array;
  }


🍍 桶排序(Bucket Sort)


image.png

image.png


简介:


桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。


设计思想:


设置一个定量的数组当作空桶;

遍历输入数据,并且把数据一个一个放到对应的桶里去;

对每个不是空的桶进行排序;

从不是空的桶里把排好序的数据拼接起来。

代码实现:


c语言版

void bucketSort(int *arr, int size, int max)
{
    int i,j;
    int buckets[max];
    memset(buckets, 0, max * sizeof(int));
    for (i = 0; i < size; i++) {
        buckets[arr[i]]++; 
    }
    for (i = 0, j = 0; i < max; i++) {
        while((buckets[i]--) >0)
            arr[j++] = i;
    }
}


Java版

  /**
     * 桶排序
     * 
     * @param array
     * @param bucketSize 桶中可以放多少种元素
     * @return
     * @date 2022/01/20
     */
    public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
        if (array == null || array.size() < 2)
            return array;
        int max = array.get(0), min = array.get(0);
        // 找到最大值最小值
        for (int i = 0; i < array.size(); i++) {
            if (array.get(i) > max)
                max = array.get(i);
            if (array.get(i) < min)
                min = array.get(i);
        }
        int bucketCount = (max - min) / bucketSize + 1;
        ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
        ArrayList<Integer> resultArr = new ArrayList<>();
        //构造桶
        for (int i = 0; i < bucketCount; i++) {
            bucketArr.add(new ArrayList<Integer>());
        }
        //往桶里塞元素
        for (int i = 0; i < array.size(); i++) {
            bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
        }
        for (int i = 0; i < bucketCount; i++) {
            if (bucketSize == 1) { 
                for (int j = 0; j < bucketArr.get(i).size(); j++)
                    resultArr.add(bucketArr.get(i).get(j));
            } else {
                if (bucketCount == 1)
                    bucketSize--;
                ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
                for (int j = 0; j < temp.size(); j++)
                    resultArr.add(temp.get(j));
            }
        }
        return resultArr;
    }



相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
95 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
124 7
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
105 8
|
2月前
|
算法 C语言
【C语言】排序查找
【C语言】排序查找
|
2月前
|
算法 搜索推荐 Java
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
这篇文章介绍了如何使用Java后端技术,结合Graphics2D和Echarts等工具,生成包含个性化信息和图表的海报,并提供了详细的代码实现和GitHub项目链接。
156 0
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
|
2月前
|
Java 编译器 C语言
【一步一步了解Java系列】:Java中的方法对标C语言中的函数
【一步一步了解Java系列】:Java中的方法对标C语言中的函数
32 3
|
2月前
|
存储 Java C语言
【一步一步了解Java系列】:了解Java与C语言的运算符的“大同小异”
【一步一步了解Java系列】:了解Java与C语言的运算符的“大同小异”
46 3
|
2月前
|
Java 编译器 C语言
【一步一步了解Java系列】:探索Java基本类型与C语言的区别
【一步一步了解Java系列】:探索Java基本类型与C语言的区别
56 2
|
2月前
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
33 1