大数据入门与实战-SQL基础教程

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据入门与实战-SQL基础教程

学习资料为:sql基础教程【日】MICK


第1章数据库和SQL


1.SQL书写的基本规则

  • SQL分句以分号结尾
  • SQL语句不区分大小写
  1. 创建数据库


CREATE DATABASE shop;


  1. 创建表


USE shop;
CREATE TABLE shoin(
product_id  CHAR(4) NOT NULL COMMENT "商品id",
product_name VARCHAR(100) NOT NULL COMMENT "商品名称",
product_cate VARCHAR(32) NOT NULL COMMENT "商品分类",
product_price INTEGER COMMENT "销售价格",
product_cost INTEGER COMMENT "进货单价",
register_date DATE COMMENT "登记日期",
PRIMARY KEY (product_id)
);


70.png

  1. 删除表


DROP shop;


  1. 更新表定义
  • 添加列


ALTER TABLE shoin ADD COLUMN product_nickname VARCHAR(50) COMMENT "商品别称";


  • 删除列


ALTER TABLE shoin DROP COLUMN product_nickname;


  1. 插入数据


-- DML:插入数据
INSERT INTO shoin VALUES ('0001','T恤衫','衣服',1000,500,'2009-09-20');
INSERT INTO shoin VALUES ('0002','打孔器','办公用品',500,320,'2009-09-11');
INSERT INTO shoin VALUES ('0003','运动T恤衫','衣服',4000,2800,NULL);
INSERT INTO shoin VALUES ('0004','菜刀','厨房用具',3000,2800,'2009-09-20');
INSERT INTO shoin VALUES ('0005','高压锅','厨房用具',6800,5000,'2009-01-15');
INSERT INTO shoin VALUES ('0006','叉子','厨房用具',500,NULL,'2009-09-20');
INSERT INTO shoin VALUES ('0007','擦菜板','厨房用具',880,790,'2009-04-28');
INSERT INTO shoin VALUES ('0008','圆珠笔','办公用品',100,NULL,'2009-11-11');
COMMIT;


71.png


第2章 查询基础


  1. 列的查询
  • 查询三列


SELECT product_id,product_name,product_cost FROM shoin;


72.png


  • 查询所有列


SELECT * FROM shoin;


  • 设置列的别名


SELECT product_id as id,
             product_name as name,
             product_cost as cost
    FROM shoin;


73.png


  1. 设置常数


74.png



这里不要使用双引号

  1. 删除重复行
  • 对一列使用关键字 DISTINCT


SELECT DISTINCT product_cate 
    FROM shoin;


75.png


  • 对多列使用关键字DISTINCT
  1. 根据where选择数据


SELECT product_name,product_cate
    FROM shoin
 WHERE product_cate = '衣服';


76.png


  1. 注释的书写方法
  • --单行注释
  • /**/多行注释
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
SQL 算法 大数据
为什么大数据平台会回归SQL
在大数据领域,尽管非结构化数据占据了大数据平台80%以上的存储空间,结构化数据分析依然是核心任务。SQL因其广泛的应用基础和易于上手的特点成为大数据处理的主要语言,各大厂商纷纷支持SQL以提高市场竞争力。然而,SQL在处理复杂计算时表现出的性能和开发效率低下问题日益凸显,如难以充分利用现代硬件能力、复杂SQL优化困难等。为了解决这些问题,出现了像SPL这样的开源计算引擎,它通过提供更高效的开发体验和计算性能,以及对多种数据源的支持,为大数据处理带来了新的解决方案。
|
2月前
|
SQL 缓存 Java
【详细实用のMyBatis教程】获取参数值和结果的各种情况、自定义映射、动态SQL、多级缓存、逆向工程、分页插件
本文详细介绍了MyBatis的各种常见用法MyBatis多级缓存、逆向工程、分页插件 包括获取参数值和结果的各种情况、自定义映射resultMap、动态SQL
【详细实用のMyBatis教程】获取参数值和结果的各种情况、自定义映射、动态SQL、多级缓存、逆向工程、分页插件
|
2月前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
3月前
|
SQL 数据管理 数据库
SQL语句实例教程:掌握数据查询、更新与管理的关键技巧
SQL(Structured Query Language,结构化查询语言)是数据库管理和操作的核心工具
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
57 3
|
3月前
|
SQL 数据库
SQL数据库基础语法入门
[link](http://www.vvo.net.cn/post/082935.html)
|
3月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
68 0
|
3月前
|
SQL 消息中间件 分布式计算
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
114 0