Flask 扫盲系列-在线股票走势图

简介: 今天我们来分享一个 Flask 小应用,如何动手实现一个简易的在线股票 K 线图表。我们需要用到的知识包括 PyEcharts 的使用,tushare 库获取股票数据的方法以及 Flask 的基本用法。

获取股票数据


我们先来看下 tushare 的使用,这个应该时当前最为流行的股票数据库了吧,一行代码,就能轻松获取某支股票的历史数据

import tushare as ts
df = ts.get_hist_data('000001')
print(df)

image.png

现在股票的历史数据有了,我们还需要一份股票名称和股票代码的对应表,同样通过 tushare 来获取

stock_list = ts.get_stock_basics()
stock_list.reset_index(inplace=True)
stock_list[['code', 'name']].to_csv('stock_code_name.csv')

这样就成功保存了一份股票名称和股票代码的对应数据

image.png


PyEcharts作图


下面再来看看如何通过 PyEcharts 来制作 K 线图,其实官网上的例子已经非常具体了,我们只需要把拿到的历史股票数据做些简单处理即可,我这里直接给我的数据处理过程

mydate = df[:30].index.tolist()
mydata = df[:30][['open', 'close', 'low', 'high']].values.tolist()
def kline_base(mydate, data) -> Kline:
    c = (
        Kline()
        .add_xaxis(mydate)
        .add_yaxis("kline", data)
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(is_scale=True,
                                    splitarea_opts=opts.SplitAreaOpts(
                    is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
                ),
            ),
            xaxis_opts=opts.AxisOpts(is_scale=True,
                                    axislabel_opts=opts.LabelOpts(rotate=-30)),
            title_opts=opts.TitleOpts(title="Kline-基本示例"),
            datazoom_opts=[opts.DataZoomOpts()],
        )
    )
    return c
kline_base(mydate, mydata).render_notebook()

这样就可以得到一个不错的 K 线图了

image.png

下面我们就可以着手完成 Flask 的代码啦


构建Web框架


首先我们先来完成 Web 框架的整体编写,为了页面的美观与编码的方便,直接使用 bootstrap 来构建前端页面

视图函数编写

首先完成初始化工作,在项目目录下创建一个 app.py 文件

from flask import Flask, render_template, request
from pyecharts import options as opts
from pyecharts.charts import Kline
import tushare as ts
import pandas as pd
from flask_bootstrap import Bootstrap
app = Flask(__name__)
bootstrap = Bootstrap(app)

导入需要用到的库,并完成 flask app 的初始化工作。


接下来在写一个 404 的视图函数,统一处理所有的 Not Found 页面

@app.errorhandler(404)
def page_not_found(e):
    return render_template("404.html"), 404

接着我们绑定根地址到 index 视图函数上,返回到 index.html 模板文件上

@app.route("/")
def index():
    return render_template("index.html")

模板编写

在同级目录创建一个 templates 文件夹,创建三个 HTML 文件,分别为 404.html,base.html 和 index.html

base.html 时所有其他页面 HTML 模板的母模板

{% extends "bootstrap/base.html" %}
{% block title %}我的股票走势网站{% endblock %}
{% block navbar %}
<div class="navbar navbar-inverse" role="navigation">
    <div class="container">
        <div class="navbar-header">
            <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
                <span class="sr-only">Toggle navigation</span>
                <span class="icon-bar"></span>
                <span class="icon-bar"></span>
                <span class="icon-bar"></span>
            </button>
            <a class="navbar-brand" href="/">Stock-Data</a>
        </div>
        <div class="navbar-collapse collapse">
            <ul class="nav navbar-nav">
                <li><a href="/">Home</a></li>
            </ul>
        </div>
    </div>
</div>
{% endblock %}
{% block content %}
<div class="container">
    {% block page_content %}
    {% endblock %}
</div>
{% endblock %}

创建一个导航栏,并定义相关的 block 内容

接下来编写 404.html 文件,展示非法 url 请求地址时的页面

{% extends "base.html" %}
{% block title %}Page Not Found{% endblock %}
{% block page_content %}
<div class="page-header">
    <h1>Not Found</h1>
</div>
{% endblock %}

对于 index.html 文件,就是我们需要展示 K 线图的页面,我们后面再处理。


编辑主逻辑


首先编写一个检查股票正确性的函数

def check_stock(code):
    n = 0
    l = []
    stock_code = pd.read_csv("stock_code_name.csv", dtype=object)
    stock_code.drop('Unnamed: 0', axis=1, inplace=True)
    stock_list = stock_code.values.tolist()
    for i in stock_list:
        if code in i:
            n += 1
            l = i
        else:
            continue
    return n, l

如果股票正确,则返回 n=1,否则返回 n=0

接下来再编写获取股票数据的函数

def get_stock_data(code, ctime):
    df = ts.get_hist_data(code)
    mydate = df[:ctime].index.tolist()
    mydata = df[:ctime][['open', 'close', 'low', 'high']].values.tolist()
    return [mydate, mydata]


下面就是把 PyEcharts 集成到 Flask 应用了,可以按照官方的教程走,把 PyEcharts 的样式文件等拷贝到自己的 templates 目录下,再编写一个用于调用 kline_base() 函数的视图函数

@app.route("/Kline", methods=['GET', 'POST'])
def get_kline_chart():
    stock_name = request.form.get('stockName')
    query_time = request.form.get('queryTime')
    if not stock_name:
        stock_name = '平安银行'
    if not query_time:
        query_time = 30
    status, stock_code = check_stock(stock_name)
    if status == 0:
        return 'error stock code or name'
    mydate, mydata = get_stock_data(stock_code[0], int(query_time))
    c = kline_base(mydate, mydata, stock_code[1])
    return c.dump_options()

首先通过 request 变量获取到前端传递过来的数据,分别为 stockName 和 queryTime,如果这两个参数是空值时,则赋予它们一个默认值。

接着判断股票代码的正确性并获取股票历史数据。

最后调用 kline_base 函数画出 K 线图,并渲染到前端页面上。


前端页面编写


最后我们来完成前端页面的工作

首先定义一个表单,用于传递股票名称,查询时间

<form id="form1" onsubmit="return false" action="#" method="post">
             <p id="p1">股票名称:
                 <input name="stockName" type="text" id="stockName" tabindex="1" size="16" value="" placeholder="股票名称"/>
             </p>
             <p id="p2">查询时间:
                 <input name="queryTime" type="text" id="queryTime" tabindex="2" size="16" value="" placeholder="输入30查询近30天数据"/>
             </p>
             <p><input type="submit" value="查询" onclick="getData()"></p>
         </form>

然后就是通过 JQuery 来动态获取数据

function getData() {
            var chart = echarts.init(document.getElementById('kline'), 'white', {renderer: 'canvas'});
            $.ajax({
                type: "POST",
                dataType: "json",
                url: "/Kline" ,
                data: $('#form1').serialize(),
                success: function (result) {
                    chart.setOption(result);
                },
                error: function() {
                    alert("错误的股票代码!");
                }
            });
        }

最后我们看下整体的效果

image.png

是不是效果还不错呢,后面还可以继续添加功能来完善我们的小小网站!

相关文章
|
8月前
|
前端开发 JavaScript 数据处理
Flask 扫盲系列-在线股票走势图
Flask 扫盲系列-在线股票走势图
108 0
Flask 扫盲系列-在线股票走势图
|
8月前
|
前端开发 Shell 数据库
Flask 扫盲系列-权限设置
Flask 扫盲系列-权限设置
|
8月前
|
存储 安全 数据库
Flask 扫盲系列-数据库
Flask 扫盲系列-数据库
|
前端开发 Shell 数据库
Flask 扫盲系列-权限设置
在前面的学习中,我们设置了系统的注册和登陆功能,已经基本满足了一个小型 Web 应用的需求。那么如果我们想通过这个网站来赚些小钱呢,就需要提供更高级的功能,当然这些高级功能不是免费开放的,设计一个权限系统,来控制高级应用的使用。
Flask 扫盲系列-权限设置
|
存储 JSON 前端开发
Flask 扫盲系列-Flask 上下文
上一次我们做了一个简单的在线股票走势网站,今天我们来继续完善下网站功能,并学习些新的 Flask 知识点。
Flask 扫盲系列-Flask 上下文
|
存储 安全 数据库连接
Flask 扫盲系列-数据库
在前面的学习中,我们已经简单搭建了一个在线股票走势查询系统,并且了解了 Flask 中的上下文,那么今天我们一起来学习下 Flask 中的数据库操作。
|
2月前
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
121 3
|
2月前
|
开发框架 前端开发 JavaScript
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
99 2
|
2月前
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
148 2