《C++编程规范:101条规则、准则与最佳实践》——1.2:在高警告级别干净利落地进行编译

简介:

本节书摘来自异步社区出版社《C++编程规范:101条规则、准则与最佳实践》一书中的第1章,第1.2节,作者:【加】Herb Sutter , 【罗】Andrei,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.2:在高警告级别干净利落地进行编译

摘要
高度重视警告:使用编译器的最高警告级别。应该要求构建是干净利落的(没有警告)。理解所有的警告。通过修改代码而不是降低警告级别来排除警告。

讨论
编译器是你的朋友。如果它对某个构造发出警告,一般表明代码中存有潜在的问题。

成功的构建应该是无声无息的(没有警告的)。如果不是这样,你很快就会养成不仔细查看输出的习惯,从而漏过真正的问题(见第2条)。

排除警告的正确做法是:(1)把它弄清楚;然后,(2)改写代码以排除警告,并使代码阅读者和编译器都能更加清楚,代码是按编写者的意图执行的。

即使程序一开始似乎能够正确运行,也还是要这样做。即使你能够肯定警告是良性的,仍然要这样做。因为良性警告的后面可能隐藏着未来指向真正危险的警告。

示例
例1 第三方头文件。无法修改的库头文件可能包含引起警告(可能是良性的)的构造。如果这样,可以用自己的包含原头文件的版本将此文件包装起来,并有选择地为该作用域关闭烦人的警告,然后在整个项目的其他地方包含此包装文件。例如(请注意,各种编译器的警告控制语法并不一样):

// 文件:myproj/my_lambda.h —— 包装了Boost的lambda.hpp
// 应该总是包含此文件,不要直接使用lambda.hpp。
// 注意:我们的构建现在会自动检查grep lambda.hpp <srcfile>。
// Boost.Lambda 会产生一些已知无害的编译器警告。
// 在改正以后,我们将删除以下的编译指示,但此头文件仍然存在。
//
#pragma warning(push)  // 仅禁用此头文件
 #pragma warning(disable:4512)
 #pragma warning(disable:4180)
 #include <boost/lambda/lambda.hpp>
#pragma warning(pop)   // 恢复最初的警告级别```
例2 “未使用的函数参数”(Unused function parameter)。检查一下,确认确实不需要使用该函数参数(比如,这可能是一个为了未来扩展而设的占位符,或者是代码没有使用的标准化函数签名中的一个必需部分)。如果确实不需要,那直接删除函数参数名就行了。

// ……在一个用户定义的allocator中未使用hint ……
// 警告:unused parameter 'localityHint
pointer allocate( size_type numObjects, const void *localityHint = 0 ) {
 return static_cast( mallocShared( numObjects * sizeof(T) ) );
}
// 消除了警告的新版本
pointer allocate( size_type numObjects, const void / localityHint */ = 0 ) {
 return static_cast( mallocShared( numObjects * sizeof(T) )  );
}`
例3 “定义了从未使用过的变量”(Variable defined but never used)。检查一下,确认并不是真正要引用该变量。(RAII基于栈的对象经常会引起此警告的误报,见第13条。)如果确实不需要,经常可以通过插入一个变量本身的求值表达式,使编译器不再报警。(这种求值不会影响运行时的速度。)

// 警告:variable 'lock' is defined but never used
void Fun() {
 Lock lock;
 // ……
}
// 可能消除了警告的新版本
void Fun() {
 Lock lock;
 lock;
 // ……
}```
例4 “变量使用前可能未经初始化”(Variable may be used without being initialized)。初始化变量(见第19条)。

例5 “遗漏了return语句”(Missing return)。有时候编译器会要求每个分支都有return语句,即使控制流可能永远也不会到达函数的结尾(比如:无限循环,throw语句,其他的返回形式等)。这可能是一件好事,因为有时候你仅仅是认为控制不会运行到结尾。例如,没有default情况的switch语句不太适应变化,应该加上执行assert( false ) 的default情况(见第68条和第90条)。

// 警告:missing "return"
int Fun( Color c ) {
 switch( c ) {
 case Red:  return 2;
 case Green:  return 0;
 case Blue:
 case Black:  return 1;
 }
}
// 消除了警告的新版本
int Fun( Color c ) {
 switch( c ) {
 case Red:  return 2;
 case Green:  return 0;
 case Blue:
 case Black:  return 1;
 default:   assert( !"should never get here!" );  // !"string" 的求值结果为false
       return -1;
 }
}`
例6 “有符号数/无符号数不匹配”(signed/unsigned mismatch)。通常没有必要对符号不同的整数进行比较和赋值。应该改变所操作的变量的类型,从而使类型匹配。最坏的情况下,要插入一个显式的强制转换。(其实不管怎么样,编译器都将为你插入一个强制转换,同时还会发出警告,因此还不如显式地先发而制之。)

例外情况
有时候,编译器可能会发出烦人的甚至虚假的警告(即纯属噪声的警告),但是又没有提供消除的方法,这时忙于修改代码解决这个警告可能是劳而无功或者事倍功半的。如果遇到了这种罕见的情形,作为团队决定,应该避免对纯粹无益的警告再做无用功:单独禁用这个警告,但是要尽可能在局部禁用,并且编写一个清晰的注释,说明为什么必须禁用。

参考文献
[Meyers97] §48[8] ● [Stroustrup94] §2.6.2

相关文章
|
27天前
|
自然语言处理 编译器 Linux
|
6月前
|
安全 编译器 C++
C++一分钟之-编译时计算:constexpr与模板元编程
【6月更文挑战第28天】在C++中,`constexpr`和模板元编程用于编译时计算,提升性能和类型安全。`constexpr`指示编译器在编译时计算函数或对象,而模板元编程通过模板生成类型依赖代码。常见问题包括误解constexpr函数限制和模板递归深度。解决策略包括理解规则、编写清晰代码、测试验证和适度使用。通过实战示例展示了如何使用`constexpr`计算阶乘和模板元编程计算平方。
93 13
|
5月前
|
消息中间件 Java C语言
消息队列 MQ使用问题之在使用C++客户端和GBase的ESQL进行编译时出现core dump,该怎么办
消息队列(MQ)是一种用于异步通信和解耦的应用程序间消息传递的服务,广泛应用于分布式系统中。针对不同的MQ产品,如阿里云的RocketMQ、RabbitMQ等,它们在实现上述场景时可能会有不同的特性和优势,比如RocketMQ强调高吞吐量、低延迟和高可用性,适合大规模分布式系统;而RabbitMQ则以其灵活的路由规则和丰富的协议支持受到青睐。下面是一些常见的消息队列MQ产品的使用场景合集,这些场景涵盖了多种行业和业务需求。
|
1月前
|
自然语言处理 编译器 Linux
告别头文件,编译效率提升 42%!C++ Modules 实战解析 | 干货推荐
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。
|
2月前
|
存储 程序员 编译器
简述 C、C++程序编译的内存分配情况
在C和C++程序编译过程中,内存被划分为几个区域进行分配:代码区存储常量和执行指令;全局/静态变量区存放全局变量及静态变量;栈区管理函数参数、局部变量等;堆区则用于动态分配内存,由程序员控制释放,共同支撑着程序运行时的数据存储与处理需求。
121 21
|
2月前
|
Linux 编译器 C语言
Linux c/c++之多文档编译
这篇文章介绍了在Linux操作系统下使用gcc编译器进行C/C++多文件编译的方法和步骤。
43 0
Linux c/c++之多文档编译
|
2月前
|
算法 编译器 C++
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
82 2
|
5月前
|
C++ 运维
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
70 2
|
5月前
|
编译器 C++ 运维
开发与运维编译问题之在C++中创建一个简单的自旋锁如何解决
开发与运维编译问题之在C++中创建一个简单的自旋锁如何解决
27 2
|
5月前
|
C++ 开发者
C++一分钟之-编译时计算:constexpr与模板元编程
【7月更文挑战第2天】C++的`constexpr`和模板元编程(TMP)实现了编译时计算,增强代码效率。`constexpr`用于声明编译时常量表达式,适用于数组大小等。模板元编程则利用模板进行复杂计算。常见问题包括编译时间过长、可读性差。避免方法包括限制TMP使用,保持代码清晰。结合两者可以解决复杂问题,但需明确各自适用场景。正确使用能提升代码性能,但需平衡复杂性和编译成本。
134 3