【手把手 脑把脑】教会你使用idea基于MapReduce的统计数据分析(从问题分析到代码编写)(一)

简介: 【手把手 脑把脑】教会你使用idea基于MapReduce的统计数据分析(从问题分析到代码编写)(一)

1 编程前总分析

1.1 数据源

英语,李沐,85,男,20
数学,李沐,54,男,20
音乐,李沐,54,男,20
体育,李沐,34,男,20
语文,李媛,81,女,20
音乐,李媛,85,女,20
体育,李媛,89,女,20
语文,马珂,75,女,19
英语,马珂,85,女,19
音乐,马珂,75,女,19
体育,马珂,65,女,19
语文,潘琴,42,女,20
英语,潘琴,48,女,20
音乐,潘琴,48,女,20
体育,潘琴,78,女,20
英语,秦灿,75,男,19
数学,秦灿,89,男,19
音乐,秦灿,85,男,19
体育,秦灿,99,男,19
语文,王靓,85,女,21
英语,王靓,85,女,21
数学,王靓,48,女,21
音乐,王靓,86,女,21
音乐,王靓,85,女,21
体育,王靓,96,女,21
体育,王靓,87,女,21
英语,吴起,85,男,20
数学,吴起,85,男,20
英语,张翔,96,男,20
数学,张翔,85,男,20
音乐,张翔,85,男,20
体育,张翔,87,男,20
语文,郑虎,85,男,20
数学,郑虎,85,男,20
音乐,郑虎,88,男,20
体育,郑虎,68,男,20
语文,周伟,76,男,19
英语,周伟,85,男,19
数学,周伟,76,男,19
音乐,周伟,99,男,19
体育,周伟,90,男,19
数学,朱鸿,90,男,21
音乐,朱鸿,80,男,21
体育,朱鸿,81,男,21

1.2 需要掌握的知识

1.2.1 Hadoop对比java的数据类型

java Hadoop

boolean BooleanWritable

Integer/int IntWritable

Long/long LongWritable

Float/float FloatWritable

Double/double DoubleWritable

String Text

NullWritable

1.2.2 MapReduce流程简介

   MapReduce是一种简化的并行计算编程模型框架,主要解决了分布式计算的相关问题。所谓的分布式计算就是将一个文件里的数据内容,一行行的发送给mapper,mapper接收到一行数据使用split分割后接收,并按key分组后传给reducer,reducer将接收到的一组数据进行处理后输出,当所有的组都处理完成结束一个MapReduce。

image.png



1.3.3 MapReduce流程细分

   功能:统计每门课程中相同分数的人有多少及他们的名字


   思考一下,想要统计每门课程中相同分数的人数及名字,我们需要以什么字段为标准对数据进行分组(mapper最主要的功能就是分组)?想要搞明白上面的问题,试着和mysql的分组查询操作做一下类比,具体sql语句如下:


SELECT 姓名 FROM 表 GROUP BY 课程名称,成绩 ;


   参考sql语句的分组查询,mapper功能就相当于按课程和成绩两个字段值对数据进行分组并查询学生姓名。mapper里的最后一句context.write(key,value);里的两个参数,key等于GROUP BY后面的字段名-->课程成绩和成绩的拼接字符串,value等于GROUP BY前面的字段名-->姓名。mapper就实现了将所有key值相同的分为一组,value放在迭代器中,一组组传给reducer,reducer使用一个Text类型的key和迭代器value进行接收。


image.png


2 编码阶段

       mapreduce拆分:每个mapreduce程序都可以拆分成三个小部分mapper类、reducer类、main方法类。每个类都有其固定的框架,需要改变的就只有mapper和reducer类中重写方法的方法体本身,还有main方法里面的各项参数值。


       如果说,当然我的读者肯定都是聪明的亚批,我是说如果你朋友的java编程基础不是很好,我的注释表示它完全可以很细。        


相关文章
|
7月前
|
文字识别 算法 数据挖掘
视觉智能开放平台产品使用合集之对于统计研究和数据分析,有哪些比较好的工具推荐
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
8月前
|
数据可视化 前端开发 数据挖掘
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享(上)
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享
|
5月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
160 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
5月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析的新手指南深入浅出操作系统:从理论到代码实践
【8月更文挑战第30天】在数据驱动的世界中,掌握数据分析技能变得越来越重要。本文将引导你通过Python这门强大的编程语言来探索数据分析的世界。我们将从安装必要的软件包开始,逐步学习如何导入和清洗数据,以及如何使用Pandas库进行数据操作。文章最后会介绍如何使用Matplotlib和Seaborn库来绘制数据图表,帮助你以视觉方式理解数据。无论你是编程新手还是有经验的开发者,这篇文章都将为你打开数据分析的大门。
|
5月前
|
分布式计算 大数据 分布式数据库
"揭秘HBase MapReduce高效数据处理秘诀:四步实战攻略,让你轻松玩转大数据分析!"
【8月更文挑战第17天】大数据时代,HBase以高性能、可扩展性成为关键的数据存储解决方案。结合MapReduce分布式计算框架,能高效处理HBase中的大规模数据。本文通过实例展示如何配置HBase集群、编写Map和Reduce函数,以及运行MapReduce作业来计算HBase某列的平均值。此过程不仅限于简单的统计分析,还可扩展至更复杂的数据处理任务,为企业提供强有力的大数据技术支持。
89 1
|
5月前
|
机器学习/深度学习 数据采集 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
122 1
|
5月前
|
供应链 算法 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛B题的解决方案,深入分析了产品订单数据,并使用Arimax和Var模型进行了需求预测,旨在为企业供应链管理提供科学依据,论文共23页并包含实现代码。
182 0
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
|
6月前
|
Java Maven
idea安装并使用maven依赖分析插件:Maven Helper
idea安装并使用maven依赖分析插件:Maven Helper
2714 7
|
5月前
|
数据可视化 数据挖掘 数据处理
【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】
【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】
180 0
|
5月前
|
数据采集 人工智能 数据挖掘
【钉钉杯大学生大数据挑战赛】初赛B 航班数据分析与预测 Python代码实现Baseline
本文提供了参加"钉钉杯大学生大数据挑战赛"初赛B的航班数据分析与预测项目的Python代码实现Baseline。内容包括题目背景、思路分析、训练集和测试集的预处理、模型训练与预测、特征重要性分析,以及代码下载链接。预处理步骤涉及读取数据、时间信息处理、前序航班延误时间计算、天气信息匹配等。模型训练使用了Gradient Boosting Classifier,并对模型的准确率和特征重要性进行了评估。
95 0

热门文章

最新文章