iOS-底层原理 16:dyld与objc的关联

简介: iOS-底层原理 16:dyld与objc的关联

本文的主要目的是理解dyld与objc是如何关联的

在上一篇文章iOS-底层原理 15:dyld加载流程

中,我们梳理了dyld的加载流程,下面来详细介绍下dyld和objc的关联


_objc_init 源码解析


首先,来看下libObjc中的_objc_init方法源码

void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    // fixme defer initialization until an objc-using image is found?
    //读取影响运行时的环境变量,如果需要,还可以打开环境变量帮助 export OBJC_HELP = 1
    environ_init();
    //关于线程key的绑定,例如线程数据的析构函数
    tls_init();
    //运行C++静态构造函数,在dyld调用我们的静态析构函数之前,libc会调用_objc_init(),因此我们必须自己做
    static_init();
    //runtime运行时环境初始化,里面主要是unattachedCategories、allocatedClasses -- 分类初始化
    runtime_init();
    //初始化libobjc的异常处理系统
    exception_init();
    //缓存条件初始化
    cache_init();
    //启动回调机制,通常这不会做什么,因为所有的初始化都是惰性的,但是对于某些进程,我们会迫不及待地加载trampolines dylib
    _imp_implementationWithBlock_init();
    /*
     _dyld_objc_notify_register -- dyld 注册的地方
     - 仅供objc运行时使用
     - 注册处理程序,以便在映射、取消映射 和初始化objc镜像文件时使用,dyld将使用包含objc_image_info的镜像文件数组,回调 mapped 函数
     map_images:dyld将image镜像文件加载进内存时,会触发该函数
     load_images:dyld初始化image会触发该函数
     unmap_image:dyld将image移除时会触发该函数
     */
    _dyld_objc_notify_register(&map_images, load_images, unmap_image);
#if __OBJC2__
    didCallDyldNotifyRegister = true;
#endif
}

根据源码所知,主要分为以下几部分:


  • environ_init:初始化一系列环境变量,并读取影响运行时的环境变量
  • tls_init:关于线程key的绑定
  • static_init:运行C++静态构造函数(只会运行系统级别的构造函数),在dyld调用静态析构函数之前,libc会调用_objc_init
  • runtime_init:runtime运行时环境初始化,里面操作是unattachedCategoriesallocatedClasses(表的初始化)
  • exception_init:初始化libObjc的异常处理系统
  • cache_init: cache缓存初始化
  • _imp_implementationWithBlock_init :启动回调机制,通常这不会做什么,因为所有的初始化都是惰性的,但是对于某些进程,我们会迫不及待地加载trampolines dylib
  • _dyld_objc_notify_register: dyld的注册


下面主要针对以上几部分配合源码进行说明


1、environ_init方法:环境变量初始化


environ_init方法的源码如下,其中的关键代码是 for 循环

void environ_init(void) 
{
    //...省略部分逻辑
if (PrintHelp  ||  PrintOptions) {
        //...省略部分逻辑
        for (size_t i = 0; i < sizeof(Settings)/sizeof(Settings[0]); i++) {
            const option_t *opt = &Settings[i];            
            if (PrintHelp) _objc_inform("%s: %s", opt->env, opt->help);
            if (PrintOptions && *opt->var) _objc_inform("%s is set", opt->env);
        }
    }
}

有以下两种方式可以打印所有的环境变量


  • 将for循环单独拿出来,去除所有条件,打印环境变量

image.png

通过终端命令export OBJC_hrlp = 1,打印环境变量

image.png

这些环境变量,均可以通过target -- Edit Scheme -- Run --Arguments -- Environment Variables配置,其中常用的环境变量主要有以下几个(环境变量汇总见文末!):


  • DYLD_PRINT_STATISTICS:设置 DYLD_PRINT_STATISTICSYES,控制台就会打印 App 的加载时长,包括整体加载时长和动态库加载时长,即main函数之前的启动时间(查看pre-main耗时),可以通过设置了解其耗时部分,并对其进行启动优化
  • OBJC_DISABLE_NONPOINTER_ISA:杜绝生成相应的nonpointer isa(nonpointer isa指针地址 末尾为1 ),生成的都是普通的isa
  • OBJC_PRINT_LOAD_METHODS:打印 ClassCategory+ (void)load 方法的调用信息
  • NSDoubleLocalizedStrings:项目做国际化本地化(Localized)的时候是一个挺耗时的工作,想要检测国际化翻译好的语言文字UI会变成什么样子,可以指定这个启动项。可以设置 NSDoubleLocalizedStringsYES
  • NSShowNonLocalizedStrings:在完成国际化的时候,偶尔会有一些字符串没有做本地化,这时就可以设置NSShowNonLocalizedStringsYES,所有没有被本地化的字符串全都会变成大写


环境变量 - OBJC_DISABLE_NONPOINTER_ISA


OBJC_DISABLE_NONPOINTER_ISA为例,将其设置为YES,如下图所示

image.png未设置 OBJC_DISABLE_NONPOINTER_ISA前, isa地址的二进制打印,末尾为1


image.png

设置OBJC_DISABLE_NONPOINTER_ISA环境变量后,末尾变成了0

image.png

所以OBJC_DISABLE_NONPOINTER_ISA可以控制isa优化开关,从而优化整个内存结构


环境变量 - OBJC_PRINT_LOAD_METHODS


  • 配置打印load 方法的环境变量OBJC_PRINT_LOAD_METHODS,设置为YES
  • LGPerson类中重写+load函数,运行程序,load函数的打印如下

image.png

所以,OBJC_PRINT_LOAD_METHODS可以监控所有的+load方法,从而处理启动优化(后续会总结下启动优化方法)


2、tls_init:线程key的绑定


主要是本地线程池初始化以及析构,源码如下

void tls_init(void)
{
#if SUPPORT_DIRECT_THREAD_KEYS//本地线程池,用来进行处理
    pthread_key_init_np(TLS_DIRECT_KEY, &_objc_pthread_destroyspecific);//初始init
#else
    _objc_pthread_key = tls_create(&_objc_pthread_destroyspecific);//析构
#endif
}


3、static_init:运行系统级别的C++静态构造函数


主要是运行系统级别的C++静态构造函数,在dyld调用我们的静态构造函数之前,libc调用_objc_init方法,即系统级别的C++构造函数 先于 自定义的C++构造函数 运行

static void static_init()
{
    size_t count;
    auto inits = getLibobjcInitializers(&_mh_dylib_header, &count);
    for (size_t i = 0; i < count; i++) {
        inits[i]();
    }
}


4、runtime_init:运行时环境初始化


主要是运行时的初始化,主要分为两部分:分类初始化类的表初始化(后续会详细讲解对应的函数)

void runtime_init(void)
{
    objc::unattachedCategories.init(32);
    objc::allocatedClasses.init(); //初始化 -- 开辟的类的表
}


5、exception_init:初始化libobjc的异常处理系统


主要是初始化libobjc的异常处理系统,注册异常处理的回调,从而监控异常的处理,源码如下

void exception_init(void)
{
    old_terminate = std::set_terminate(&_objc_terminate);
}
  • 当有crash(crash是指系统发生的不允许的一些指令,然后系统给的一些信号)发生时,会来到_objc_terminate方法,走到uncaught_handler扔出异常
/***********************************************************************
* _objc_terminate
* Custom std::terminate handler.
*
* The uncaught exception callback is implemented as a std::terminate handler. 
* 1. Check if there's an active exception
* 2. If so, check if it's an Objective-C exception
* 3. If so, call our registered callback with the object.
* 4. Finally, call the previous terminate handler.
**********************************************************************/
static void (*old_terminate)(void) = nil;
static void _objc_terminate(void)
{
    if (PrintExceptions) {
        _objc_inform("EXCEPTIONS: terminating");
    }
    if (! __cxa_current_exception_type()) {
        // No current exception.
        (*old_terminate)();
    }
    else {
        // There is a current exception. Check if it's an objc exception.
        @try {
            __cxa_rethrow();
        } @catch (id e) {
            // It's an objc object. Call Foundation's handler, if any.
            (*uncaught_handler)((id)e);//扔出异常
            (*old_terminate)();
        } @catch (...) {
            // It's not an objc object. Continue to C++ terminate.
            (*old_terminate)();
        }
    }
}


  • 搜索uncaught_handler,在app层会传入一个函数用于处理异常,以便于调用函数,然后回到原有的app层中,如下所示,其中fn即为传入的函数,即 uncaught_handler 等于 fn
objc_uncaught_exception_handler 
objc_setUncaughtExceptionHandler(objc_uncaught_exception_handler fn)
{
//    fn为设置的异常句柄 传入的函数,为外界给的
    objc_uncaught_exception_handler result = uncaught_handler;
    uncaught_handler = fn; //赋值
    return result;
}


crash分类


crash的主要原因是收到了未处理的信号,主要来源于三个地方:


  • kernel 内核
  • 其他进行
  • App本身


所以相对应的,crash也分为了3种


  • Mach异常:是指最底层的内核级异常。用户态的开发者可以直接通过Mach API设置thread,task,host的异常端口,来捕获Mach异常。
  • Unix信号:又称BSD 信号,如果开发者没有捕获Mach异常,则会被host层的方法ux_exception()将异常转换为对应的UNIX信号,并通过方法threadsignal()将信号投递到出错线程。可以通过方法signal(x, SignalHandler)来捕获single
  • NSException 应用级异常:它是未被捕获的Objective-C异常,导致程序向自身发送了SIGABRT信号而崩溃,对于未捕获的Objective-C异常,是可以通过try catch来捕获的,或者通过NSSetUncaughtExceptionHandler()机制来捕获


针对应用级异常,可以通过注册异常捕获的函数,即NSSetUncaughtExceptionHandler机制,实现线程保活, 收集上传崩溃日志


应用级crash拦截


所以在开发中,会针对crash进行拦截处理,即app代码中给一个异常句柄NSSetUncaughtExceptionHandler,传入一个函数给系统,当异常发生后,调用函数(函数中可以线程保活、收集并上传崩溃日志),然后回到原有的app层中,其本质就是一个回调函数,如下图所示

image.png

上述方式只适合收集应用级异常,我们要做的就是用自定义的函数替代该ExceptionHandler即可


6、cache_init:缓存初始化


主要是缓存初始化,源码如下

void cache_init()
{
#if HAVE_TASK_RESTARTABLE_RANGES
    mach_msg_type_number_t count = 0;
    kern_return_t kr;
    while (objc_restartableRanges[count].location) {
        count++;
    }
    //为当前任务注册一组可重新启动的缓存
    kr = task_restartable_ranges_register(mach_task_self(),
                                          objc_restartableRanges, count);
    if (kr == KERN_SUCCESS) return;
    _objc_fatal("task_restartable_ranges_register failed (result 0x%x: %s)",
                kr, mach_error_string(kr));
#endif // HAVE_TASK_RESTARTABLE_RANGES
}


7、_imp_implementationWithBlock_init:启动回调机制


该方法主要是启动回调机制,通常这不会做什么,因为所有的初始化都是惰性的,但是对于某些进程,我们会迫不及待地加载libobjc-trampolines.dylib,其源码如下

void
_imp_implementationWithBlock_init(void)
{
#if TARGET_OS_OSX
    // Eagerly load libobjc-trampolines.dylib in certain processes. Some
    // programs (most notably QtWebEngineProcess used by older versions of
    // embedded Chromium) enable a highly restrictive sandbox profile which
    // blocks access to that dylib. If anything calls
    // imp_implementationWithBlock (as AppKit has started doing) then we'll
    // crash trying to load it. Loading it here sets it up before the sandbox
    // profile is enabled and blocks it.
    // 在某些进程中渴望加载libobjc-trampolines.dylib。一些程序(最著名的是嵌入式Chromium的较早版本使用的QtWebEngineProcess)启用了严格限制的沙箱配置文件,从而阻止了对该dylib的访问。如果有任何调用imp_implementationWithBlock的操作(如AppKit开始执行的操作),那么我们将在尝试加载它时崩溃。将其加载到此处可在启用沙箱配置文件之前对其进行设置并阻止它。
    // This fixes EA Origin (rdar://problem/50813789)
    // and Steam (rdar://problem/55286131)
    if (__progname &&
        (strcmp(__progname, "QtWebEngineProcess") == 0 ||
         strcmp(__progname, "Steam Helper") == 0)) {
        Trampolines.Initialize();
    }
#endif
}


8、_dyld_objc_notify_register:dyld注册


_dyld_objc_notify_register方法


这个方法的具体实现在iOS-底层原理 15:dyld加载流程已经有详细说明,其源码实现是在dyld源码中,以下是_dyld_objc_notify_register方法的声明

//
// Note: only for use by objc runtime
// Register handlers to be called when objc images are mapped, unmapped, and initialized.
// Dyld will call back the "mapped" function with an array of images that contain an objc-image-info section.
// Those images that are dylibs will have the ref-counts automatically bumped, so objc will no longer need to
// call dlopen() on them to keep them from being unloaded.  During the call to _dyld_objc_notify_register(),
// dyld will call the "mapped" function with already loaded objc images.  During any later dlopen() call,
// dyld will also call the "mapped" function.  Dyld will call the "init" function when dyld would be called
// initializers in that image.  This is when objc calls any +load methods in that image.
//
void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped);

从注释中,可以得出:


  • 仅供objc运行时使用
  • 注册处理程序,以便在映射、取消映射和初始化objc图像时调用
  • dyld将会通过一个包含objc-image-info的镜像文件的数组回调mapped函数


方法中的三个参数分别表示的含义如下:


  • map_images:dyld将image(镜像文件)加载进内存时,会触发该函数
  • load_image:dyld初始化image会触发该函数
  • unmap_image:dyld将image移除时,会触发该函数


dyld与Objc的关联


其方法的源码实现与调用如下,即dyld与Objc的关联可以通过源码体现


===> dyld源码--具体实现
void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped)
{
    dyld::registerObjCNotifiers(mapped, init, unmapped);
}
🔽
===> libobjc源码中--调用
_dyld_objc_notify_register(&map_images, load_images, unmap_image);

从上可以得出


  • mapped 等价于 map_images
  • init 等价于 load_images
  • unmapped 等价于 unmap_image


iOS-底层原理 15:dyld加载流程中,我们知道了load_images是在notifySingle方法中,通过sNotifyObjCInit调用的,如下所示

image.png

sNotifyObjCInit调用


然后通过查找sNotifyObjCInit,最终找到了_dyld_objc_notify_register --> registerObjCNotifiers,在该方法中将_dyld_objc_notify_register传入的参数赋值给了3个回调方法


image.png

所以 有以下等价关系


  • sNotifyObjCMapped  == mapped == map_images
  • sNotifyObjCInit == init == load_images
  • sNotifyObjCUnmapped == unmapped == unmap_image


map_images调用时机


关于load_images的调用时机已经在dyld加载流程中讲解过了,下面以map_images为例,看看其调用时机


  • dyld中全局搜索 sNotifyObjcMappedregisterObjCNotifiers -- notifyBatchPartial -- sNotifyObjCMapped

image.png全局搜索notifyBatchPartial,在registerObjCNotifiers方法中调用


image.png

所以有以下结论:map_images是先于load_images调用,即先map_images ,再load_images


dyld与Objc关联


结合dyld加载流程,dyld与Objc的关联如下图所示

image.png

  • dyld中注册回调函数,可以理解为 添加观察者
  • 在objc中dyld注册,可以理解为发送通知
  • 触发回调,可以理解为执行通知selector


附录


环境变量汇总


image.png

image.png

image.png

image.png

相关文章
|
8月前
|
存储 运维 安全
iOS加固原理与常见措施:保护移动应用程序安全的利器
iOS加固原理与常见措施:保护移动应用程序安全的利器
97 0
|
8月前
|
存储 运维 安全
iOS加固原理与常见措施:保护移动应用程序安全的利器
iOS加固原理与常见措施:保护移动应用程序安全的利器
169 0
|
C语言 索引
09-iOS之load和initialize底层调用原理分析
09-iOS之load和initialize底层调用原理分析
103 0
|
存储 缓存 监控
iOS 底层原理39:Instruments系列(一)Instruments介绍
iOS 底层原理39:Instruments系列(一)Instruments介绍
2004 0
iOS 底层原理39:Instruments系列(一)Instruments介绍
|
8月前
|
安全 前端开发 数据安全/隐私保护
【教程】 iOS混淆加固原理篇
本文介绍了iOS应用程序混淆加固的缘由,编译过程以及常见的加固类型和逆向工具。详细讨论了字符串混淆、类名、方法名混淆、程序结构混淆加密等加固类型,并介绍了常见的逆向工具和代码虚拟化技术。
|
8月前
|
安全 算法 前端开发
【完整版教程】iOS混淆加固原理篇
在iOS开发中,应用程序的安全性和保护显得尤为重要。由于iOS系统的开放性,一些逆向工具可以轻松地对应用程序进行反编译和分析,从而导致应用程序源代码、算法和敏感信息的泄露。为了保护应用程序的安全性,我们需要对应用程序进行混淆加固。本文将介绍iOS混淆加固的原理和常见的加固类型。
|
8月前
|
JSON 安全 数据安全/隐私保护
​iOS Class Guard github用法、工作原理和安装详解及使用经验总结
​iOS Class Guard github用法、工作原理和安装详解及使用经验总结
113 0
|
8月前
|
安全 数据安全/隐私保护 iOS开发
【iOS开发】iOS App的加固保护原理:使用ipaguard混淆加固
【iOS开发】iOS App的加固保护原理:使用ipaguard混淆加固
105 0
|
运维 安全 数据安全/隐私保护
iOS加固原理与常见措施:保护移动应用程序安全的利器
随着移动应用的普及和用户对数据安全的关注度提高,iOS加固成为了很多开发者和企业的必备工具。那么,iOS加固是如何保护应用程序的安全性的呢? iOS加固是指对OS应用程序进行一系列的安全措施,以提高其抗逆向工程、反编译和破解的能力。下面将介绍iOS加固的原理和常见的加固措施。
iOS加固原理与常见措施:保护移动应用程序安全的利器
|
JSON 安全 数据安全/隐私保护
​iOS Class Guard github用法、工作原理和安装详解及使用经验总结
iOS Class Guard是一个用于OC类、协议、属性和方法名混淆的命令行工具。它是class-dump的扩展。这个工具会生成一个symbol table,这个table在编译期间会包含进工程中。iOS-Class-Guard能有效的隐藏绝大多数的类、协议、方法、属性和 实例变量 名。iOS-Class-Guard不是应用安全的最终解决方案,但是它绝对能让攻击者更难读懂你的程序。iOS-Class-Guard会加大代码分析和runtime检查的难度,这个工具可以认为是一个简单基础的混淆方法。由于OC的架构决定了iOS应用程序的剖析相当简单,check out一下链接就知晓了: