经典分类网络结构(二)

简介: 经典分类网络结构(二)

3.3.4 Inception 结构



首先我们要说一下在Network in Network中引入的1 x 1卷积结构的相关作用


3.3.4.1MLP卷积(1 x 1卷积)


image.png


目的:提出了一种新的深度网络结构,称为“网络中的网络”(NIN),增强接受域内局部贴片的模型判别能力。


  • 做法
  • 对于传统线性卷积核:采用线性滤波器,然后采用非线性激活。
  • 提出MLP卷积取代传统线性卷积核


  • 作用或优点:


  • 1、多个1x1的卷积核级联加上配合激活函数,将feature map由多通道的线性组合变为非线性组合(信息整合),提高特征抽象能力(Multilayer Perceptron,缩写MLP,就是一个多层神经网络)
  • 2、1x1的卷积核操作还可以实现卷积核通道数的降维和升维,实现参数的减小化


3.3.4.2 1 x 1卷积介绍


image.png


从图中,看到1 x 1卷积的过程,那么这里先假设只有3个1x1Filter,那么最终结果还是56x56x3。但是每一个FIlter的三个参数的作用


看作是对三个通道进行了线性组合。


  • 我们甚至可以把这几个FIlter可以看成就是一个简单的神经元结构,每个神经元参数数量与前面的通道数量相等。


  • 通常在卷积之后会加入非线性激活函数,在这里之后加入激活函数,就可以理解成一个简单的MLP网络了。


image.png


3.3.4.3 通道数变化


那么对于1x1网络对通道数的变化,其实并不是最重要的特点,因为毕竟3 x 3,5 x 5都可以带来通道数的变化,


而1x1卷积的参数并不多,我们拿下面的例子来看。


image.png


  • 保持通道数不变
  • 提升通道数
  • 减少通道数


3.3.4.4 Inception层


这个结构其实还有名字叫盗梦空间结构。


  • 目的:
  • 代替人手工去确定到底使用1x1,3x3,5x5还是是否需要max_pooling层,由网络自动去寻找适合的结构。并且节省计算。


image.png


特点


  • 是每一个卷积/池化最终结果的长、宽大小一致
  • 特殊的池化层,需要增加padding,步长为1来使得输出大小一致,并且选择32的通道数
  • 最终结果28 x 28 x 256


  • 使用更少的参数,达到跟AlexNet或者VGG同样类似的输出结果


3.3.4.5 Inception改进


改进目的:减少计算,如5 x 5卷积那的运算量


  • 上面的参数:5 x 5 x 32 x 192 =153600
  • 下面的参数:192 x 16 + 5 x 5 x 16 x 32 = 3072 + 12800 = 15872


所以上面的结构会需要大量的计算,我们把这种改进的结构称之为网络的"瓶颈",网络缩小后扩大。


那么这样改变会影响网络的性能和效果吗?


GoogleNet就是如此,获得了非常好的效果。所以合理的设计网络当中的Inception结构能够减少计算,实现更好的效果。


3.3.4.6 GoogleNet结构(了解)


其中包含了多个Inception结构。


20200712114057135.png


完整结构:


20200712114124406.png

3.3.5 卷积神经网络学习特征可视化



我们肯定会有疑问真个深度的卷积网络到底在学习什么?可以将网络学习过程中产生的特征图可视化出来,并且对比原图来看看每一层都干了什么。


可视化案例使用的网络


image.png


  • 可视化结果


image.pngimage.pngimage.pngimage.pngimage.png


  • layer1,layer2学习到的特征基本是颜色、边缘等低层特征
  • layer3学习到的特征,一些纹理特征,如网格纹理
  • layer4学习到的特征会稍微复杂些,比如狗的头部形状
  • layer5学习到的是完整一些的,比如关键性的区分特征


3.3.6 总结



  • 掌握LeNet-5 结构计算
  • 了解卷积常见网络结构
  • 掌握1x1卷积结构作用
  • 掌握Inception结构作用


目录
相关文章
|
4月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
424 0
|
3月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
368 0
|
5月前
|
机器学习/深度学习 数据采集 运维
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
匹配网络是一种基于度量的元学习方法,通过计算查询样本与支持集样本的相似性实现分类。其核心依赖距离度量函数(如余弦相似度),并引入注意力机制对特征维度加权,提升对关键特征的关注能力,尤其在处理复杂或噪声数据时表现出更强的泛化性。
279 6
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
|
4月前
|
安全 网络性能优化 网络虚拟化
网络交换机分类与功能解析
接入交换机(ASW)连接终端设备,提供高密度端口与基础安全策略;二层交换机(LSW)基于MAC地址转发数据,构成局域网基础;汇聚交换机(DSW)聚合流量并实施VLAN路由、QoS等高级策略;核心交换机(CSW)作为网络骨干,具备高性能、高可靠性的高速转发能力;中间交换机(ISW)可指汇聚层设备或刀片服务器内交换模块。典型流量路径为:终端→ASW→DSW/ISW→CSW,分层架构提升网络扩展性与管理效率。(238字)
1082 0
|
11月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
550 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
11月前
|
机器学习/深度学习 自动驾驶 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
476 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
8月前
|
存储 数据管理 网络虚拟化
特殊网络类型分类
本文介绍了网络技术中的关键概念,包括虚拟局域网(VLAN)、存储区域网络(SAN)、网络桥接、接入网以及按拓扑结构和交换方式分类的网络类型。VLAN通过逻辑分隔提高性能与安全性;SAN提供高性能的数据存储解决方案;网络桥接实现不同网络间的互联互通;接入网解决“最后一千米”的连接问题。此外,文章详细对比了总线型、星型、树型、环型和网状型等网络拓扑结构的特点,并分析了电路交换、报文交换和分组交换的优缺点,为网络设计与应用提供了全面参考。
297 8
|
11月前
|
机器学习/深度学习 编解码 TensorFlow
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
589 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
11月前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
247 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
11月前
|
机器学习/深度学习 自动驾驶 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
913 13