由RGB到HSV颜色空间的理解

简介:

1. RGB模型

2. HSV模型

3. 如何理解RGB与HSV的联系

4. HSV在图像处理中的应用

5. opencv中RGB-->HSV实现


在图像处理中,最常用的颜色空间是RGB模型,常用于颜色显示和图像处理,三维坐标的模型形式,非常容易被理解。

而HSV模型,是针对用户观感的一种颜色模型,侧重于色彩表示,什么颜色、深浅如何、明暗如何。第一次接触HSV,书本里首先抛出的是一个圆锥模型,由于很少使用HSV,所以印象不深刻,但看一些资料时,HSV的概念时不时出来骚扰一些人的神经,所以,弄清楚HSV与RGB的关系,建立直观的印象是很有必要的。


1. RGB模型。

三维坐标:


原点到白色顶点的中轴线是灰度线,r、g、b三分量相等,强度可以由三分量的向量表示。

用RGB来理解色彩、深浅、明暗变化:

色彩变化: 三个坐标轴RGB最大分量顶点与黄紫青YMC色顶点的连线

深浅变化:RGB顶点和CMY顶点到原点和白色顶点的中轴线的距离

明暗变化:中轴线的点的位置,到原点,就偏暗,到白色顶点就偏亮


PS: 光学的分析

三原色RGB混合能形成其他的颜色,并不是说物理上其他颜色的光是由三原色的光混合形成的,每种单色光都有自己独特的光谱,如黄光是一种单色光,但红色与绿色混合能形成黄色,原因是人的感官系统所致,与人的生理系统有关。

只能说“将三原色光以不同的比例复合后,对人的眼睛可以形成与各种频率的可见光等效的色觉。”


2. HSV模型

倒锥形模型:


这个模型就是按色彩、深浅、明暗来描述的。

H是色彩

S是深浅, S = 0时,只有灰度

V是明暗,表示色彩的明亮程度,但与光强无直接联系,(意思是有一点点联系吧)。




3. RGB与HSV的联系

从上面的直观的理解,把RGB三维坐标的中轴线立起来,并扁化,就能形成HSV的锥形模型了。

但V与强度无直接关系,因为它只选取了RGB的一个最大分量。而RGB则能反映光照强度(或灰度)的变化。

v = max(r, g, b)

由RGB到HSV的转换:


"  HSV对用户来说是一种直观的颜色模型。我们可以从一种纯色彩开始,即指定色彩角H,并让V=S=1,然后我们可以通过向其中加入黑色和白色来得到我们需要的颜色。增加黑色可以减小V而S不变,同样增加白色可以减小S而V不变。例如,要得到深蓝色,V=0.4 S=1 H=240度。要得到淡蓝色,V=1 S=0.4 H=240度。" --百度百科


4. HSV在图像处理应用


HSV在用于指定颜色分割时,有比较大的作用。

H和S分量代表了色彩信息。

分割应用:

      用H和S分量来表示颜色距离,颜色距离指代表两种颜色之间的数值差异
     Androutsos等人通过实验对HSV颜色空间进行了大致划分,亮度大于75%并且饱和度大于20%为亮彩色区域,亮度小于25%为黑色区域,亮度大于75%并且饱和度小于20%为白色区域,其他为彩色区域。

   对于不同的彩色区域,混合H与S变量,划定阈值,即可进行简单的分割。


HSV的去阴影算法:

Improving shadow suppression in moving object detection with HSV color information


5. RGB --> HSV中的opencv实现


[cpp]  view plain copy
  1. struct RGB2HSV_f  
  2. {  
  3.     typedef float channel_type;  
  4.       
  5.     RGB2HSV_f(int _srccn, int _blueIdx, float _hrange)  
  6.     : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange) {}  
  7.       
  8.     void operator()(const float* src, float* dst, int n) const  
  9.     {  
  10.         int i, bidx = blueIdx, scn = srccn;  
  11.         float hscale = hrange*(1.f/360.f);  
  12.         n *= 3;  
  13.       
  14.         for( i = 0; i < n; i += 3, src += scn )  
  15.         {  
  16.             float b = src[bidx], g = src[1], r = src[bidx^2];  
  17.             float h, s, v;  
  18.               
  19.             float vmin, diff;  
  20.               
  21.             v = vmin = r;  
  22.             if( v < g ) v = g;  
  23.             if( v < b ) v = b;       // v = max(b, g, r)  
  24.             if( vmin > g ) vmin = g;  
  25.             if( vmin > b ) vmin = b;  
  26.               
  27.             diff = v - vmin;  
  28.             s = diff/(float)(fabs(v) + FLT_EPSILON);  // s = 1 - min/max  
  29.             diff = (float)(60./(diff + FLT_EPSILON));  
  30.             if( v == r )  
  31.                 h = (g - b)*diff;  
  32.             else if( v == g )  
  33.                 h = (b - r)*diff + 120.f;  
  34.             else  
  35.                 h = (r - g)*diff + 240.f;  
  36.               
  37.             if( h < 0 ) h += 360.f;  // h 求值  
  38.               
  39.             dst[i] = h*hscale;  
  40.             dst[i+1] = s;  
  41.             dst[i+2] = v;  
  42.         }  
  43.     }  
  44.       
  45.     int srccn, blueIdx;  
  46.     float hrange;  
  47. };  


RGB --> GRAY的实现 算法:

[cpp]  view plain copy
  1. template<typename _Tp> struct RGB2Gray  
  2. {  
  3.     typedef _Tp channel_type;  
  4.       
  5.     RGB2Gray(int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)  
  6.     {  
  7.         static const float coeffs0[] = { 0.299f, 0.587f, 0.114f };  // 三分量系数不同,人眼对绿色最敏感,所以G分量系数较大  
  8.         memcpy( coeffs, _coeffs ? _coeffs : coeffs0, 3*sizeof(coeffs[0]) );  
  9.         if(blueIdx == 0)  
  10.             std::swap(coeffs[0], coeffs[2]);  
  11.     }  
  12.       
  13.     void operator()(const _Tp* src, _Tp* dst, int n) const  // 运算  
  14.     {  
  15.         int scn = srccn;  
  16.         float cb = coeffs[0], cg = coeffs[1], cr = coeffs[2];  
  17.         for(int i = 0; i < n; i++, src += scn)  
  18.             dst[i] = saturate_cast<_Tp>(src[0]*cb + src[1]*cg + src[2]*cr);  // 结果  
  19.     }  
  20.     int srccn;  
  21.     float coeffs[3];  
  22. };  
相关文章
|
6月前
RGB颜色模型和HSV颜色模型
RGB颜色模型和HSV颜色模型“【5月更文挑战第22天】”
157 2
|
6月前
|
存储 计算机视觉 Python
BGR与RGB
BGR与RGB
1639 1
|
6月前
GRAY色彩空间
【5月更文挑战第13天】GRAY色彩空间。
43 1
|
6月前
HSV色彩空间
【5月更文挑战第13天】HSV色彩空间。
48 1
|
6月前
HSV 被念错
HSV 被念错“【5月更文挑战第12天】”
49 6
|
6月前
|
计算机视觉
RGB色彩空间
【5月更文挑战第11天】RGB色彩空间。
53 3
|
6月前
将BGR色彩空间转换为YCrCb色彩空间
【5月更文挑战第13天】将BGR色彩空间转换为YCrCb色彩空间。
85 2
|
6月前
YCrCb色彩空间
【5月更文挑战第12天】YCrCb色彩空间。
71 6
|
6月前
|
编解码 算法 计算机视觉
HSV
HSV
126 4
|
6月前
|
存储 计算机视觉 索引
BGR
BGR
92 1