1877.数组中最大数对和的最小值
难度:中等
题目
一个数对 (a,b) 的 数对和 等于 a + b 。最大数对和 是一个数对数组中最大的 数对和 。
比方说,如果我们有数对 (1,5) ,(2,3) 和 (4,4),最大数对和 为 max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8 。
给你一个长度为 偶数 n 的数组 nums ,请你将 nums 中的元素分成 n / 2 个数对,使得:
nums 中每个元素 恰好 在 一个 数对中,且
最大数对和 的值 最小 。
请你在最优数对划分的方案下,返回最小的 最大数对和 。
提示:
- n == nums.length
- 2 <= n <= 10^5
- n 是 偶数 。
- 1 <= nums[i] <= 10^5
示例
示例 1: 输入:nums = [3,5,2,3] 输出:7 解释:数组中的元素可以分为数对 (3,3) 和 (5,2) 。 最大数对和为 max(3+3, 5+2) = max(6, 7) = 7 。 示例 2: 输入:nums = [3,5,4,2,4,6] 输出:8 解释:数组中的元素可以分为数对 (3,5),(4,4) 和 (6,2) 。 最大数对和为 max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8 。
分析
这种题目,感觉难度超不过小学3年级的奥数题...顶多二年级,不能再高了...
要想最大数最小,那当然是排序的数组,最大数和最小数加,然后逐步向中间靠拢么...
常规的双指针,觉得还是给了这道题几分薄面。
直接循环一半数组,然后尾部下标倒着减就行了...
双指针解题
class Solution: def minPairSum(self, nums): nums.sort() left, right, ret = 0, len(nums) - 1, 0 while left < right: ret = max(ret,nums[left] + nums[right]) left += 1 right -= 1 return ret
循环一半数组
class Solution: def minPairSum(self, nums): nums.sort() ln = len(nums) ret = 0 for i in range(ln //2): ret = max(ret,nums[i] + nums[ln - 1 - i]) return ret