干货 | 一文搞懂全链路监控:方案概述与比较(下)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 干货 | 一文搞懂全链路监控:方案概述与比较

5. AGENT无侵入部署

通过AGENT代理无侵入式部署,将性能测量与业务逻辑完全分离,可以测量任意类的任意方法的执行时间,这种方式大大提高了采集效率,并且减少运维成本。根据服务跨度主要分为两大类AGENT


  1. a. 服务内AGENT,这种方式是通过 Java 的agent机制,对服务内部的方法调用层次信息进行数据收集,如方法调用耗时、入参、出参等信息。
  2. b. 跨服务AGENT,这种情况需要对主流RPC框架以插件形式提供无缝支持。并通过提供标准数据规范以适应自定义RPC框架:
(1)Dubbo支持;
(2)Rest支持;
(3)自定义RPC支持;


6. 调用链监控好处

  1. 准确掌握生产一线应用部署情况
  2. 从调用链全流程性能角度,识别对关键调用链,并进行优化
  3. 提供可追溯的性能数据,量化 IT 运维部门业务价值;
  4. 快速定位代码性能问题,协助开发人员持续性的优化代码;
  5. 协助开发人员进行白盒测试,缩短系统上线稳定期;

4 

方案比较


市面上的全链路监控理论模型大多都是借鉴 Google Dapper 论文,本文重点关注以下三种APM组件:

  1. Zipkin:由Twitter公司开源,开放源代码分布式的跟踪系统,用于收集服务的定时数据,以解决微服务架构中的延迟问题,包括:数据的收集、存储、查找和展现。
  2. Pinpoint:一款对Java编写的大规模分布式系统的APM工具,由韩国人开源的分布式跟踪组件。
  3. Skywalking:国产的优秀APM组件,是一个对JAVA分布式应用程序集群的业务运行情况进行追踪、告警和分析的系统。

以上三种全链路监控方案需要对比的项提炼出来


  1. 探针的性能
    主要是agent对服务的吞吐量、CPU和内存的影响。微服务的规模和动态性使得数据收集的成本大幅度提高。
  2. collector的可扩展性
    能够水平扩展以便支持大规模服务器集群。
  3. 全面的调用链路数据分析
    提供代码级别的可见性以便轻松定位失败点和瓶颈。
  4. 对于开发透明,容易开关
    添加新功能而无需修改代码,容易启用或者禁用。
  5. 完整的调用链应用拓扑
    自动检测应用拓扑,帮助你搞清楚应用的架构


4.1 探针的性能


比较关注探针的性能,毕竟APM定位还是工具,如果启用了链路监控组建后,直接导致吞吐量降低过半,那也是不能接受的。对skywalking、zipkin、pinpoint进行了压测,并与基线(未使用探针)的情况进行了对比。


选用了一个常见的基于Spring的应用程序,他包含Spring Boot, Spring MVC,redis客户端,mysql。监控这个应用程序,每个trace,探针会抓取5个span(1 Tomcat, 1 SpringMVC, 2 Jedis, 1 Mysql)。这边基本和 skywalkingtest 的测试应用差不多。


模拟了三种并发用户:500,750,1000。使用jmeter测试,每个线程发送30个请求,设置思考时间为10ms。使用的采样率为1,即100%,这边与生产可能有差别。pinpoint默认的采样率为20,即50%,通过设置agent的配置文件改为100%。zipkin默认也是1。组合起来,一共有12种。下面看下汇总表:

image.png

从上表可以看出,在三种链路监控组件中,skywalking的探针对吞吐量的影响最小,zipkin的吞吐量居中。pinpoint的探针对吞吐量的影响较为明显,在500并发用户时,测试服务的吞吐量从1385降低到774,影响很大。然后再看下CPU和memory的影响,在内部服务器进行的压测,对CPU和memory的影响都差不多在10%之内。


4.2 collector的可扩展性


collector的可扩展性,使得能够水平扩展以便支持大规模服务器集群。

  1. zipkin
    开发zipkin-Server(其实就是提供的开箱即用包),zipkin-agent与zipkin-Server通过http或者mq进行通信,http通信会对正常的访问造成影响,所以还是推荐基于mq异步方式通信,zipkin-Server通过订阅具体的topic进行消费。这个当然是可以扩展的,多个zipkin-Server实例进行异步消费mq中的监控信息
    image.png

2.skywalking
skywalking的collector支持两种部署方式:单机和集群模式。collector与agent之间的通信使用了gRPC

3.pinpoint
同样,pinpoint也是支持集群和单机部署的。pinpoint agent通过thrift通信框架,发送链路信息到collector

4.3 全面的调用链路数据分析

全面的调用链路数据分析,提供代码级别的可见性以便轻松定位失败点和瓶颈。

  1. zipkin

image.png

  1. zipkin的链路监控粒度相对没有那么细,从上图可以看到调用链中具体到接口级别,再进一步的调用信息并未涉及。

  2. skywalkingimage.png
    skywalking 还支持20+的中间件、框架、类库,比如:主流的dubbo、Okhttp,还有DB和消息中间件。上图skywalking链路调用分析截取的比较简单,网关调用user服务,由于支持众多的中间件,所以skywalking链路调用分析比zipkin完备些
  3. pinpointimage.png
    pinpoint应该是这三种APM组件中,数据分析最为完备的组件。提供代码级别的可见性以便轻松定位失败点和瓶颈,上图可以看到对于执行的sql语句,都进行了记录。还可以配置报警规则等,设置每个应用对应的负责人,根据配置的规则报警,支持的中间件和框架也比较完备。

4.4 对于开发透明,容易开关

对于开发透明,容易开关,添加新功能而无需修改代码,容易启用或者禁用。我们期望功能可以不修改代码就工作并希望得到代码级别的可见性。

对于这一点,Zipkin 使用修改过的类库和它自己的容器(Finagle)来提供分布式事务跟踪的功能。但是,它要求在需要时修改代码。skywalking和pinpoint都是基于字节码增强的方式,开发人员不需要修改代码,并且可以收集到更多精确的数据因为有字节码中的更多信息


4.5 完整的调用链应用拓扑

自动检测应用拓扑,帮助你搞清楚应用的架构。

image.png

image.png

image.png

上面三幅图,分别展示了APM组件各自的调用拓扑,都能实现完整的调用链应用拓扑。相对来说,pinpoint界面显示的更加丰富,具体到调用的DB名,zipkin的拓扑局限于服务于服务之间


4.6 Pinpoint与Zipkin细化比较

4.6.1 Pinpoint与Zipkin差异性

  1. Pinpoint 是一个完整的性能监控解决方案:有从探针、收集器、存储到 Web 界面等全套体系;而 Zipkin 只侧重收集器和存储服务,虽然也有用户界面,但其功能与 Pinpoint 不可同日而语。反而 Zipkin 提供有 Query 接口,更强大的用户界面和系统集成能力,可以基于该接口二次开发实现。


  2. Zipkin 官方提供有基于 Finagle 框架(Scala 语言)的接口,而其他框架的接口由社区贡献,目前可以支持 Java、Scala、Node、Go、Python、Ruby 和 C# 等主流开发语言和框架;但是Pinpoint 目前只有官方提供的 Java Agent 探针,其他的都在请求社区支援中(请参见 #1759 和 #1760)。


  3. Pinpoint 提供有 Java Agent 探针,通过字节码注入的方式实现调用拦截和数据收集,可以做到真正的代码无侵入,只需要在启动服务器的时候添加一些参数,就可以完成探针的部署;而 Zipkin 的 Java 接口实现 Brave,只提供了基本的操作 API,如果需要与框架或者项目集成的话,就需要手动添加配置文件或增加代码


  4. Pinpoint 的后端存储基于 HBase,而 Zipkin 基于 Cassandra


4.6.2 Pinpoint与Zipkin相似性

Pinpoint 与 Zipkin 都是基于 Google Dapper 的那篇论文,因此理论基础大致相同。两者都是将服务调用拆分成若干有级联关系的 Span,通过 SpanId 和 ParentSpanId 来进行调用关系的级联;最后再将整个调用链流经的所有的 Span 汇聚成一个 Trace,报告给服务端的 collector 进行收集和存储

即便在这一点上,Pinpoint 所采用的概念也不完全与那篇论文一致。比如他采用 TransactionId 来取代 TraceId,而真正的 TraceId 是一个结构,里面包含了 TransactionId, SpanId 和 ParentSpanId。而且 Pinpoint 在 Span 下面又增加了一个 SpanEvent 结构,用来记录一个 Span 内部的调用细节(比如具体的方法调用等等),因此 Pinpoint 默认会比 Zipkin 记录更多的跟踪数据

但是理论上并没有限定 Span 的粒度大小,所以一个服务调用可以是一个 Span,那么每个服务中的方法调用也可以是个 Span,这样的话,其实 Brave 也可以跟踪到方法调用级别,只是具体实现并没有这样做而已

4.6.3 字节码注入 vs API 调用

Pinpoint 实现了基于字节码注入的 Java Agent 探针,而 Zipkin 的 Brave 框架仅仅提供了应用层面的 API,但是细想问题远不那么简单。字节码注入是一种简单粗暴的解决方案,理论上来说无论任何方法调用,都可以通过注入代码的方式实现拦截,也就是说没有实现不了的,只有不会实现的。但 Brave 则不同,其提供的应用层面的 API 还需要框架底层驱动的支持,才能实现拦截

比如,MySQL 的 JDBC 驱动,就提供有注入 interceptor 的方法,因此只需要实现 StatementInterceptor 接口,并在 Connection String 中进行配置,就可以很简单的实现相关拦截;而与此相对的,低版本的 MongoDB 的驱动或者是 Spring Data MongoDB 的实现就没有如此接口,想要实现拦截查询语句的功能,就比较困难。

因此在这一点上,Brave 是硬伤,无论使用字节码注入多么困难,但至少也是可以实现的,但是 Brave 却有无从下手的可能,而且是否可以注入,能够多大程度上注入,更多的取决于框架的 API 而不是自身的能力。

4.6.4 难度及成本

经过简单阅读 Pinpoint 和 Brave 插件的代码,可以发现两者的实现难度有天壤之别。在都没有任何开发文档支撑的前提下,Brave 比 Pinpoint 更容易上手。Brave 的代码量很少,核心功能都集中在 brave-core 这个模块下,一个中等水平的开发人员,可以在一天之内读懂其内容,并且能对 API 的结构有非常清晰的认识。

Pinpoint 的代码封装也是非常好的,尤其是针对字节码注入的上层 API 的封装非常出色,但是这依然要求阅读人员对字节码注入多少有一些了解,虽然其用于注入代码的核心 API 并不多,但要想了解透彻,恐怕还得深入 Agent 的相关代码,比如很难一目了然的理解 addInterceptor 和 addScopedInterceptor 的区别,而这两个方法就是位于 Agent 的有关类型中。

因为 Brave 的注入需要依赖底层框架提供相关接口,因此并不需要对框架有一个全面的了解,只需要知道能在什么地方注入,能够在注入的时候取得什么数据就可以了。就像上面的例子,我们根本不需要知道 MySQL 的 JDBC Driver 是如何实现的也可以做到拦截 SQL 的能力。


但是 Pinpoint 就不然,因为 Pinpoint 几乎可以在任何地方注入任何代码,这需要开发人员对所需注入的库的代码实现有非常深入的了解,通过查看其 MySQL 和 Http Client 插件的实现就可以洞察这一点,当然这也从另外一个层面说明 Pinpoint 的能力确实可以非常强大,而且其默认实现的很多插件已经做到了非常细粒度的拦截。


针对底层框架没有公开 API 的时候,其实 Brave 也并不完全无计可施,我们可以采取 AOP 的方式,一样能够将相关拦截注入到指定的代码中,而且显然 AOP 的应用要比字节码注入简单很多

以上这些直接关系到实现一个监控的成本,在 Pinpoint 的官方技术文档中,给出了一个参考数据。如果对一个系统集成的话,那么用于开发 Pinpoint 插件的成本是 100,将此插件集成入系统的成本是 0;但对于 Brave,插件开发的成本只有 20,而集成成本是 10。从这一点上可以看出官方给出的成本参考数据是 5:1。


但是官方又强调了,如果有 10 个系统需要集成的话,那么总成本就是 10 * 10 + 20 = 120,就超出了 Pinpoint 的开发成本 100,而且需要集成的服务越多,这个差距就越大。


4.6.5 通用性和扩展性

很显然,这一点上 Pinpoint 完全处于劣势,从社区所开发出来的集成接口就可见一斑。

Pinpoint 的数据接口缺乏文档,而且也不太标准(参考论坛讨论帖),需要阅读很多代码才可能实现一个自己的探针(比如 Node 的或者 PHP 的)。而且团队为了性能考虑使用了 Thrift 作为数据传输协议标准,比起 HTTP 和 JSON 而言难度增加了不少。


4.6.6 社区支持


这一点也不必多说,Zipkin 由 Twitter 开发,可以算得上是明星团队,而 Naver 的团队只是一个默默无闻的小团队(从 #1759 的讨论中可以看出)。虽然说这个项目在短期内不太可能消失或停止更新,但毕竟不如前者用起来更加放心。


而且没有更多社区开发出来的插件,让 Pinpoint 只依靠团队自身的力量完成诸多框架的集成实属困难,而且他们目前的工作重点依然是在提升性能和稳定性上


4.6.7 其他

Pinpoint 在实现之初就考虑到了性能问题,www.naver.com 网站的后端某些服务每天要处理超过 200 亿次的请求,因此他们会选择 Thrift 的二进制变长编码格式、而且使用 UDP 作为传输链路,同时在传递常量的时候也尽量使用数据参考字典,传递一个数字而不是直接传递字符串等等。这些优化也增加了系统的复杂度:包括使用 Thrift 接口的难度、UDP 数据传输的问题、以及数据常量字典的注册问题等等。


相比之下,Zipkin 使用熟悉的 Restful 接口加 JSON,几乎没有任何学习成本和集成难度,只要知道数据传输结构,就可以轻易的为一个新的框架开发出相应的接口。


另外 Pinpoint 缺乏针对请求的采样能力,显然在大流量的生产环境下,不太可能将所有的请求全部记录,这就要求对请求进行采样,以决定什么样的请求是我需要记录的。Pinpoint 和 Brave 都支持采样百分比,也就是百分之多少的请求会被记录下来。但是,除此之外 Brave 还提供了 Sampler 接口,可以自定义采样策略,尤其是当进行 A/B 测试的时候,这样的功能就非常有意义了。


4.6.8 总结


从短期目标来看,Pinpoint 确实具有压倒性的优势:无需对项目代码进行任何改动就可以部署探针、追踪数据细粒化到方法调用级别、功能强大的用户界面以及几乎比较全面的 Java 框架支持。但是长远来看,学习 Pinpoint 的开发接口,以及未来为不同的框架实现接口的成本都还是个未知数。


相反,掌握 Brave 就相对容易,而且 Zipkin 的社区更加强大,更有可能在未来开发出更多的接口。在最坏的情况下,我们也可以自己通过 AOP 的方式添加适合于我们自己的监控代码,而并不需要引入太多的新技术和新概念。而且在未来业务发生变化的时候,Pinpoint 官方提供的报表是否能满足要求也不好说,增加新的报表也会带来不可以预测的工作难度和工作量。

5 

Tracing 和 Monitor 区别

Monitor可分为系统监控和应用监控。系统监控比如CPU,内存,网络,磁盘等等整体的系统负载的数据,细化可具体到各进程的相关数据。这一类信息是直接可以从系统中得到的。应用监控需要应用提供支持,暴露了相应的数据


比如应用内部请求的QPS,请求处理的延时,请求处理的error数,消息队列的队列长度,崩溃情况,进程垃圾回收信息等等。Monitor主要目标是发现异常,及时报警


Tracing的基础和核心都是调用链。相关的metric大多都是围绕调用链分析得到的。Tracing主要目标是系统分析。提前找到问题比出现问题后再去解决更好


Tracing和应用级的Monitor技术栈上有很多共同点。都有数据的采集,分析,存储和展式。只是具体收集的数据维度不同,分析过程不一样。(end)

原文标题为《全链路监控(一):方案概述与比较》,作者陶邦仁链接: https://www.jianshu.com/p/92a12de11f18

相关实践学习
通过云拨测对指定服务器进行Ping/DNS监测
本实验将通过云拨测对指定服务器进行Ping/DNS监测,评估网站服务质量和用户体验。
目录
相关文章
|
传感器 监控 安全
闭环反馈系统原理概述
有时,为了获得系统的一致性和稳定性并产生控制系统的期望输出,我们使用反馈回路。反馈只不过是输出信号的一部分。这个概念在控制系统中最常见和最重要,以实现输出的稳定性。根据反馈连接,控制系统分为两种类型。它们是开环控制系统和闭环控制系统。下面简单介绍下闭环反馈系统。
3471 0
闭环反馈系统原理概述
|
存储 数据采集 Prometheus
【云原生监控系列第一篇】一文详解Prometheus普罗米修斯监控系统(山前前后各有风景,有风无风都很自由)(一)
【云原生监控系列第一篇】一文详解Prometheus普罗米修斯监控系统(山前前后各有风景,有风无风都很自由)(一)
1757 0
【云原生监控系列第一篇】一文详解Prometheus普罗米修斯监控系统(山前前后各有风景,有风无风都很自由)(一)
|
存储 数据采集 人工智能
如何设计一个监控平台(上篇)
在大型分布式微服务场景下,各个服务版本快速迭代,各类业务规模不断膨胀,同时监控的场景也在不断的发生变化,线上故障随时可能发生,各个平台错综复杂,如何保证线上服务稳定运行,同时提升运维效率,降低运维成本成了监控平台的挑战。
如何设计一个监控平台(上篇)
|
5月前
|
监控 API 开发者
分布式链路监控系统问题之ASM的开发体验被认为是噩梦般的问题如何解决
分布式链路监控系统问题之ASM的开发体验被认为是噩梦般的问题如何解决
|
8月前
|
存储 Java 分布式数据库
|
BI Sentinel
最新发布!阿里巴巴内部实战AlibabaSentinel高并发流量治理手册
为什么要使用Sentinel? Sentinel使用简单、配置灵活,可将Sentinel的动态数据源接口与配置中心结合使用,动态地改变流量规则。Sentinel提供的流量控制功能有限流、熔断、系统自适应、授权等。笔者当时使用了熔断和系统自适应功能应对突增流量导致服务雪崩的问题,同时使用限流功能并结合信号量隔离、匀速限流效果控制器,应对内部定时任务瞬时高并发调用某服务接口的问题。
140 0
最新发布!阿里巴巴内部实战AlibabaSentinel高并发流量治理手册
|
弹性计算 运维 监控
【最佳实践】《微服务架构日志采集运维管理》手把手实操步骤与常见问题
根据阿里云《微服务架构日志采集运维管理》最佳实践文档实践步骤复现应用搭建的过程,同时总结归纳部分在应用搭载过程中遇见的问题与解决方案。
|
Prometheus 监控 Cloud Native
【分布式技术专题】「架构实践于案例分析」盘点一下分布式模式下的服务治理和监控优化方案
【分布式技术专题】「架构实践于案例分析」盘点一下分布式模式下的服务治理和监控优化方案
263 0
【分布式技术专题】「架构实践于案例分析」盘点一下分布式模式下的服务治理和监控优化方案
《“静态调用链路发现“在APM中的应用场景分析及实践探索》电子版地址
“静态调用链路发现“在APM中的应用场景分析及实践探索
87 0
《“静态调用链路发现“在APM中的应用场景分析及实践探索》电子版地址
|
运维 前端开发 数据可视化
如何快速搭建全链路平台,展示服务拓扑以分析性能?
如何快速搭建全链路平台,展示服务拓扑以分析性能?
169 0
如何快速搭建全链路平台,展示服务拓扑以分析性能?