Python可视化Dash教程简译(一)

简介: “ 作为数据分析的重要一环,把得到的数据或者分析结果以图表的方式展示,是一种直观、优雅的方式。Dash是基于Flask的Python可视化工具,我在学习之余尝试着翻译官方的Tutorial,有不足之处,还望不吝指正”

作为数据分析的重要一环,把得到的数据或者分析结果以图表的方式展示,是一种直观、优雅的方式。Dash是基于Flask的Python可视化工具,我在学习之余尝试着翻译官方的Tutorial,有不足之处,还望不吝指正


Dash layout


Dash应用程序由两部分组成:第一部分是Dash应用程序的“layout”,它描述了应用程序的外观。第二部分描述了应用程序的交互性。


01.Dash 安装



pip install dash==0.34.0


pip install dash-html-components==0.13.4


pip install dash-core-components==0.41.0


pip install dash-table==3.1.11


01.Dash layout



Dash为应用程序的所有可视组件提供Python类,我们在dash_core_components和dash_html_components库中维护了一组组件,同时我们也可以使用JavaScript和React.js构建自己的组件。

创建文件app.py

1.jpg



运行这个app

$ python app.py

...Running on http://127.0.0.1:8050/ (Press CTRL+C to quit)

在浏览器中访问http:127.0.0.1:8050/,可以看到如下页面:

image.gif

我们注意到:

2.png

1. 布局由一个组件树组成,如html.Div和dcc.Graph

2. dash_html_components库为每一个HTML标签都提供一个组件。html.H1(children='Hello Dash')组件在我们的应用程序中产生了一个<h1>Hello Dash</h1>HTML元素。

3. 并不是所有的组件都是纯HTML,dash_core_components描述了更搞级别的组件。这些组件是交互式的,并通过JavaScript、HTML和CSS等生成。

4. 每个组件都完全通过关键字属性来描述。Dash是声明性的:你将主要通过这些属性来描述应用程序。

5. children属性是特殊的。按照惯例,它始终都是第一个属性,这意味着你可以省略它:html.H1(children='Hello Dash')与 html.H1('HelloDash')是相同的。此外,它还可以包含字符串,数字,单个组件或者组件列表。


02.关于HTML更多信息



dash_html_components库包含每个HTML标签的组件类以及所有HTML参数的关键字参数。

我们来通过修改组件的内联样式来自定义应用程序中的文本:

4.png

image.gif


在例子中,我们通过style属性修改了html.Div和html.H1的内联样式。

html.H1('Hello Dash', style={'textAlign':'center', 'color': '#7FDBFF'})在Dash程序中呈现为<h1 style="text-align: center; color: #7FDBFF">HelloDash</h1>。


dash_html_components和HTML属性有几点重要的不同:


1. 在HTML中,style属性是以分号分隔的字符串。在Dash中,你可以使用一个字典。

2. style字典里的键值是cameCase(驼峰样式)的,不是 text-align, 而是 textAlign。

3. HTML类属性是Dash中的className。

4. HTML标签的子项是通过children关键字参数指定的。按照惯例,这始终是第一个参数,所以通常被省略。

除此之外,你还可以在Python上下文中使用所有可用的HTML属性和标签。


03.可复用组件



通过在Python中编写标记,我们可以创建复杂的可复用组件,如表,而无需切换上下文或语言。

一个例子,从Pandas数据集中生成表格:

image.gif3.jpg

6.jpgimage.gif


04. 关于可视化的更多信息



dash_core_components库包含一个名为Graph的组件。Graph使用开源plotly.js图形库呈现交互式数据可视化。plotly.js支持超过35种图表类型,并在vector-quality SVG和high-performance WebGL中呈现图表。

同时,dash_core_components.Graph组件中的figure参数与plotly.js使用的图形参数是相同的。

一个例子,从Pandas数据集创建散点图:

7.jpg

image.gif

8.jpg


05. Markdown



可以使用dash_core_components库中的Markdown组件来编写大量的文本块。

9.jpg

image.gif11.png


06. 核心组件



dash_core_components库包含一组更高级别的组件,如下拉列表,图形等。

与所有Dash组件一样,它们完全以声明的方式描述。

下面是一些可用的组件

22.jpg

image.gif

33.pngimage.gif


可以使用help来查看更多的组件用法。


>>> help(dcc.Dropdown)
class Dropdown(dash.development.base_component.Component)
|  A Dropdown component.
|  Dropdown is an interactive dropdown element for selecting one or more
|  items.
|  The values and labels of the dropdown items are specified in the `options`
|  property and the selected item(s) are specified with the `value` property.
|
|  Use a dropdown when you have many options (more than 5) or when you are
|  constrained for space. Otherwise, you can use RadioItems or a Checklist,
|  which have the benefit of showing the users all of the items at once.
|
|  Keyword arguments:
|  - id (string; optional)
|  - className (string; optional)
|  - disabled (boolean; optional): If true, the option is disabled
|  - multi (boolean; optional): If true, the user can select multiple values
|  - options (list; optional)
|  - placeholder (string; optional): The grey, default text shown when no option is selected
|  - value (string | list; optional): The value of the input. If `multi` is false (the default)
|  then value is just a string that corresponds to the values
|  provided in the `options` property. If `multi` is true, then
|  multiple values can be selected at once, and `value` is an
|  array of items with values corresponding to those in the
|  `options` prop.```


06. 综述



Dash应用程序的布局描述了应用程序的外观,布局是组件的分层树。

dash_html_components库为所有HTML标签提供类,同时关键字参数描述HTML属性,例如style,className和ID。

dash_core_components库生成高级别的组件,如控件和图形。

相关文章
|
5天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
47 7
|
18天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
21天前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
22 1
|
21天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
21天前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
25 1
|
22天前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
23天前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
22天前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
22 1
|
24天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
25 1
|
23天前
|
Python
SciPy 教程 之 Scipy 显著性检验 5
显著性检验用于判断样本与总体假设间的差异是否由随机变异引起,或是假设与真实情况不符所致。SciPy通过scipy.stats模块提供显著性检验功能,P值用于衡量数据接近极端程度,与alpha值对比以决定统计显著性。
23 0