哈希算法

简介: 哈希算法历史悠久,业界著名的哈希算法也有很多,比如 MD5、SHA 等。在我们平时的开发中,基本上都是拿现成的直接用。所以,我今天不会重点剖析哈希算法的原理,也不会教你如何设计一个哈希算法,而是从实战的角度告诉你,在实际的开发中,我们该如何用哈希算法解决问题。

哈希算法历史悠久,业界著名的哈希算法也有很多,比如 MD5、SHA 等。在我们平时的开发中,基本上都是拿现成的直接用。所以,我今天不会重点剖析哈希算法的原理,也不会教你如何设计一个哈希算法,而是从实战的角度告诉你,在实际的开发中,我们该如何用哈希算法解决问题。


什么是哈希算法?



我们前面几节讲到“散列表”“散列函数”,这里又讲到“哈希算法”,你是不是有点一头雾水?实际上,不管是“散列”还是“哈希”,这都是中文翻译的差别,英文其实就是“Hash”。所以,我们常听到有人把“散列表”叫作“哈希表”“Hash 表”,把“哈希算法”叫作“Hash 算法”或者“散列算法”。那到底什么是哈希算法呢?


哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。但是,要想设计一个优秀的哈希算法并不容易,根据我的经验,我总结了需要满足的几点要求:


  1. 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);


  1. 对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同;


  1. 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;


  1. 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。


哈希算法的应用非常非常多,我选了最常见的七个,分别是安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。


应用一:安全加密



说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。


除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。


前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。


我着重讲一下第二点。实际上,不管是什么哈希算法,我们只能尽量减少碰撞冲突的概率,理论上是没办法做到完全不冲突的。为什么这么说呢?这里就基于组合数学中一个非常基础的理论,鸽巢原理(也叫抽屉原理)。这个原理本身很简单,它是说,如果有 10 个鸽巢,有 11 只鸽子,那肯定有 1 个鸽巢中的鸽子数量多于 1 个,换句话说就是,肯定有 2 只鸽子在 1 个鸽巢内。


有了鸽巢原理的铺垫之后,我们再来看,为什么哈希算法无法做到零冲突?


我们知道,哈希算法产生的哈希值的长度是固定且有限的。比如前面举的 MD5 的例子,哈希值是固定的 128 位二进制串,能表示的数据是有限的,最多能表示 2^128 个数据,而我们要哈希的数据是无穷的。基于鸽巢原理,如果我们对 2^128+1 个数据求哈希值,就必然会存在哈希值相同的情况。这里你应该能想到,一般情况下,哈希值越长的哈希算法,散列冲突的概率越低。


不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1/2^128。


如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是很难被破解的。


除此之外,没有绝对安全的加密。越复杂、越难破解的加密算法,需要的计算时间也越长。比如 SHA-256 比 SHA-1 要更复杂、更安全,相应的计算时间就会比较长。密码学界也一直致力于找到一种快速并且很难被破解的哈希算法。我们在实际的开发过程中,也需要权衡破解难度和计算时间,来决定究竟使用哪种加密算法。


应用二:唯一标识



哈希算法往往可以对大数据做信息摘要,通过一个较短的二进制编码来表示很大的数据。

我先来举一个例子。如果要在海量的图库中,搜索一张图是否存在,我们不能单纯地用图片的元信息(比如图片名称)来比对,因为有可能存在名称相同但图片内容不同,或者名称不同图片内容相同的情况。那我们该如何搜索呢?


我们知道,任何文件在计算中都可以表示成二进制码串,所以,比较笨的办法就是,拿要查找的图片的二进制码串与图库中所有图片的二进制码串一一比对。如果相同,则说明图片在图库中存在。但是,每个图片小则几十 KB、大则几 MB,转化成二进制是一个非常长的串,比对起来非常耗时。有没有比较快的方法呢?


我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。


如果还想继续提高效率,我们可以把每个图片的唯一标识,和相应的图片文件在图库中的路径信息,都存储在散列表中。当要查看某个图片是不是在图库中的时候,我们先通过哈希算法对这个图片取唯一标识,然后在散列表中查找是否存在这个唯一标识。


如果不存在,那就说明这个图片不在图库中;如果存在,我们再通过散列表中存储的文件路径,获取到这个已经存在的图片,跟现在要插入的图片做全量的比对,看是否完全一样。如果一样,就说明已经存在;如果不一样,说明两张图片尽管唯一标识相同,但是并不是相同的图片。


应用三:数据校验



我们知道,BT 下载的原理是基于 P2P 协议的。我们从多个机器上并行下载一个 2GB 的电影,这个电影文件可能会被分割成很多文件块(比如可以分成 100 块,每块大约 20MB)。等所有的文件块都下载完成之后,再组装成一个完整的电影文件就行了。

那么如何来校验文件块的安全、正确、完整呢?


具体的 BT 协议很复杂,校验方法也有很多,我来说其中的一种思路。


我们通过哈希算法,对 100 个文件块分别取哈希值,并且保存在种子文件中。我们在前面讲过,哈希算法有一个特点,对数据很敏感。只要文件块的内容有一丁点儿的改变,最后计算出的哈希值就会完全不同。所以,当文件块下载完成之后,我们可以通过相同的哈希算法,对下载好的文件块逐一求哈希值,然后跟种子文件中保存的哈希值比对。如果不同,说明这个文件块不完整或者被篡改了,需要再重新从其他宿主机器上下载这个文件块。


应用四:散列函数



散列函数是设计一个散列表的关键。它直接决定了散列冲突的概率和散列表的性能。不过,相对哈希算法的其他应用,散列函数对于散列算法冲突的要求要低很多。即便出现个别散列冲突,只要不是过于严重,我们都可以通过开放寻址法或者链表法解决。


不仅如此,散列函数对于散列算法计算得到的值,是否能反向解密也并不关心。散列函数中用到的散列算法,更加关注散列后的值是否能平均分布,也就是,一组数据是否能均匀地散列在各个槽中。除此之外,散列函数执行的快慢,也会影响散列表的性能,所以,散列函数用的散列算法一般都比较简单,比较追求效率。


应用五:负载均衡



我们知道,负载均衡算法有很多,比如轮询、随机、加权轮询等。那如何才能实现一个会话粘滞(session sticky)的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。


最直接的方法就是,维护一张映射关系表,这张表的内容是客户端 IP 地址或者会话 ID 与服务器编号的映射关系。客户端发出的每次请求,都要先在映射表中查找应该路由到的服务器编号,然后再请求编号对应的服务器。这种方法简单直观,但也有几个弊端:


  • 如果客户端很多,映射表可能会很大,比较浪费内存空间;


  • 客户端下线、上线,服务器扩容、缩容都会导致映射失效,这样维护映射表的成本就会很大;


如果借助哈希算法替代映射表,这些问题都可以非常完美地解决。我们可以通过哈希算法,对客户端 IP 地址或者会话 ID 计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。 这样,我们就可以把同一个 IP 过来的所有请求,都路由到同一个后端服务器上。


应用六:数据分片



在数据分片应用中,通过哈希算法对处理的海量数据进行分片,多机分布式处理,可以突破单机资源的限制。


假如我们有 1T 的日志文件,这里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?


我们来分析一下。这个问题有两个难点,第一个是搜索日志很大,没办法放到一台机器的内存中。第二个难点是,如果只用一台机器来处理这么巨大的数据,处理时间会很长。


针对这两个难点,我们可以先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。具体的思路是这样的:为了提高处理的速度,我们用 n 台机器并行处理。我们从搜索记录的日志文件中,依次读出每个搜索关键词,并且通过哈希函数计算哈希值,然后再跟 n 取模,最终得到的值,就是应该被分配到的机器编号。


这样,哈希值相同的搜索关键词就被分配到了同一个机器上。也就是说,同一个搜索关键词会被分配到同一个机器上。每个机器会分别计算关键词出现的次数,最后合并起来就是最终的结果。


实际上,这里的处理过程也是 MapReduce 的基本设计思想。


应用七:分布式存储



我们需要一种方法,使得在新加入一个机器后,并不需要做大量的数据搬移。这时候,一致性哈希算法就要登场了。


假设我们有 k 个机器,数据的哈希值的范围是[0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器负责 m/k 个小区间。当有新机器加入的时候,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据数量的均衡。一致性哈希算法的基本思想就是这么简单。除此之外,它还会借助一个虚拟的环和虚拟结点,更加优美地实现出来。这里我就不展开讲了,如果感兴趣,你可以看下这个介绍。


除了我们上面讲到的分布式缓存,实际上,一致性哈希算法的应用非常广泛,在很多分布式存储系统中,都可以见到一致性哈希算法的影子。


在分布式存储应用中,利用一致性哈希算法,可以解决缓存等分布式系统的扩容、缩容导致数据大量搬移的难题。


参考



21 | 哈希算法(上):如何防止数据库中的用户信息被脱库?


https://time.geekbang.org/column/article/65312


22 | 哈希算法(下):哈希算法在分布式系统中有哪些应用?


https://time.geekbang.org/column/article/67388




目录
相关文章
|
算法 数据安全/隐私保护 Python
哈希算法(hash)加密解密
哈希算法(hash)加密解密
10230 11
哈希算法(hash)加密解密
|
算法 机器学习/深度学习 数据安全/隐私保护
murmur3哈希算法
murmur3哈希算法 murmur3非加密哈希算法 murmur3非加密哈希算法导图 据算法作者Austin Appleby描述,有c1, c2, n 三个常量用大量测试数据调测出来的,可以对数值进行微调。
14390 0
|
19天前
|
存储 算法 安全
哈希算法
哈希算法是单向加密技术,将任意数据转化为固定长度的唯一摘要。特征包括确定性、快速性、雪崩效应和单向性。应用广泛,如数据完整性校验、密码存储和哈希表。常见算法有MD5、SHA-1、SHA-256,选定时需注意安全性和抗碰撞能力。
10 3
|
10月前
|
存储 算法 安全
哈希算法介绍
哈希算法是一种将任意长度的数据映射为固定长度的固定大小值的算法。它是一种单向函数,即无法从哈希值反推出原始数据。哈希算法在密码学、数据完整性校验、数据索引等领域有广泛的应用。
136 0
|
12月前
|
算法
散列,字符串hash初步
散列,字符串hash初步
|
算法 Serverless C++
|
存储 算法 C++
|
自然语言处理 算法 安全
hash函数作用,哈希算法通常特点,公钥,私钥和数字签名
哈希算法主要用来防止计算机传输过程中的错误,早期计算机通过前7位数据第8位奇偶校验码来保障(12.5%的浪费效率低),对于一段数据或文件,通过哈希算法生成128bit或者256bit的哈希值,如果校验有问题要求重传。
279 0
|
缓存 算法
Hash算法平衡性
Hash算法平衡性
66 0
|
算法 安全 PHP
Hash算法详细介绍与实现(一)
Hash表(HashTable)又称散列表,通过把关键字Key映射到数组中的一个位置来访问记录,以加快查找速度,这个映射函数称为Hash函数,存放记录的数组称为Hash表.散列表是散列函数的一个主要应用(注意:关键字不是像在加密中所使用的那样是秘密的,但它们都是用来"解锁"或者访问数据的。)例如,在英语字典中的关键字是英文单词,和它们相关的记录包含这些单词的定义。在这种情况下,散列函数必须把按照字母顺序排列的字符串映射到为散列表的内部数组所创建的索引上。
312 1