数据结构-树结构

简介: 树(Tree)我们首先来看,什么是“树”?再完备的定义,都没有图直观。所以我在图中画了几棵“树”。你来看看,这些“树”都有什么特征?

树(Tree)



我们首先来看,什么是“树”?再完备的定义,都没有图直观。所以我在图中画了几棵“树”。你来看看,这些“树”都有什么特征?


image.png


“树”这种数据结构真的很像我们现实生活中的“树”,这里面每个元素我们叫做“节点”;用来连接相邻节点之间的关系,我们叫做“父子关系”。


关于“树”,有三个比较相似的概念:高度(Height)、深度(Depth)、层(Level)。


image.png


“高度”这个概念,其实就是从下往上度量,比如我们要度量第 10 层楼的高度、第 13 层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是 0。


“深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是 0。


“层数”跟深度的计算类似,不过,计数起点是 1,也就是说根节点位于第 1 层。


二叉树(Binary Tree)



树结构多种多样,不过我们最常用还是二叉树。


二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。我画的这几个都是二叉树。以此类推,你可以想象一下四叉树、八叉树长什么样子。


image.png


这个图里面,有两个比较特殊的二叉树,分别是编号 2 和编号 3 这两个。其中,编号 2 的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫做满二叉树。编号 3 的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树。满二叉树又是完全二叉树的一种特殊情况


要理解完全二叉树定义的由来,我们需要先了解,如何表示(或者存储)一棵二叉树?

想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。


我们先来看比较简单、直观的链式存储法。从图中你应该可以很清楚地看到,每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。


image.png


我们再来看,基于数组的顺序存储法。我们把根节点存储在下标 i = 1 的位置,那左子节点存储在下标 2 * i = 2 的位置,右子节点存储在 2 * i + 1 = 3 的位置。以此类推,B 节点的左子节点存储在 2 * i = 2 * 2 = 4 的位置,右子节点存储在 2 * i + 1 = 2 * 2 + 1 = 5 的位置。


image.png


我来总结一下,如果节点 X 存储在数组中下标为 i 的位置,下标为 2 * i 的位置存储的就是左子节点,下标为 2 * i + 1 的位置存储的就是右子节点。反过来,下标为 i/2 的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为 1 的位置),这样就可以通过下标计算,把整棵树都串起来。


如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。


当我们讲到堆和堆排序的时候,你会发现,堆其实就是一种完全二叉树,最常用的存储方式就是数组。


二叉树的遍历



前面我讲了二叉树的基本定义和存储方法,现在我们来看二叉树中非常重要的操作,二叉树的遍历。这也是非常常见的面试题。


如何将所有节点都遍历打印出来呢?经典的方法有三种,前序遍历中序遍历后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。


  • 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。


  • 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。


  • 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。


image.png

实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。


前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)
中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)
后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r


二叉树的前、中、后序遍历的递归实现是不是很简单?你知道二叉树遍历的时间复杂度是多少吗?我们一起来看看。


从我前面画的前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数 n 成正比,也就是说二叉树遍历的时间复杂度是 O(n)。


二叉查找树(Binary Search Tree)



二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。它是怎么做到这些的呢?


这些都依赖于二叉查找树的特殊结构。二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。 我画了几个二叉查找树的例子,你一看应该就清楚了。


image.png

image.png


1. 二叉查找树的查找操作


我们先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。


image.png

2. 二叉查找树的插入操作


插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。


如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。


image.png

image.png


3. 二叉查找树的删除操作


二叉查找树的查找、插入操作都比较简单易懂,但是它的删除操作就比较复杂了 。针对要删除节点的子节点个数的不同,我们需要分三种情况来处理。


第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为 null。比如图中的删除节点 55。


第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中的删除节点 13。


第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则来删除这个最小节点。比如图中的删除节点 18。


image.png

image.png


实际上,关于二叉查找树的删除操作,还有个非常简单、取巧的方法,就是单纯将要删除的节点标记为“已删除”,但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。


  1. 二叉查找树的其他操作


除了插入、删除、查找操作之外,二叉查找树中还可以支持快速地查找最大节点和最小节点、前驱节点和后继节点。这些操作我就不一一展示了。我会将相应的代码放到 GitHub 上,你可以自己先实现一下,然后再去上面看。


二叉查找树除了支持上面几个操作之外,还有一个重要的特性,就是中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。因此,二叉查找树也叫作二叉排序树。


支持重复数据的二叉查找树



前面讲二叉查找树的时候,我们默认树中节点存储的都是数字。很多时候,在实际的软件开发中,我们在二叉查找树中存储的,是一个包含很多字段的对象。我们利用对象的某个字段作为键值(key)来构建二叉查找树。我们把对象中的其他字段叫作卫星数据。


前面我们讲的二叉查找树的操作,针对的都是不存在键值相同的情况。那如果存储的两个对象键值相同,这种情况该怎么处理呢?我这里有两种解决方法。


第一种方法比较容易。二叉查找树中每一个节点不仅会存储一个数据,因此我们通过链表和支持动态扩容的数组等数据结构,把值相同的数据都存储在同一个节点上。


第二种方法比较不好理解,不过更加优雅。


每个节点仍然只存储一个数据。在查找插入位置的过程中,如果碰到一个节点的值,与要插入数据的值相同,我们就将这个要插入的数据放到这个节点的右子树,也就是说,把这个新插入的数据当作大于这个节点的值来处理。


当要查找数据的时候,遇到值相同的节点,我们并不停止查找操作,而是继续在右子树中查找,直到遇到叶子节点,才停止。这样就可以把键值等于要查找值的所有节点都找出来。


对于删除操作,我们也需要先查找到每个要删除的节点,然后再按前面讲的删除操作的方法,依次删除。


二叉查找树的时间复杂度分析



好了,对于二叉查找树常用操作的实现方式,你应该掌握得差不多了。现在,我们来分析一下,二叉查找树的插入、删除、查找操作的时间复杂度。


实际上,二叉查找树的形态各式各样。比如这个图中,对于同一组数据,我们构造了三种二叉查找树。它们的查找、插入、删除操作的执行效率都是不一样的。图中第一种二叉查找树,根节点的左右子树极度不平衡,已经退化成了链表,所以查找的时间复杂度就变成了 O(n)。


我刚刚其实分析了一种最糟糕的情况,我们现在来分析一个最理想的情况,二叉查找树是一棵完全二叉树(或满二叉树)。这个时候,插入、删除、查找的时间复杂度是多少呢?

从我前面的例子、图,以及还有代码来看,不管操作是插入、删除还是查找,时间复杂度其实都跟树的高度成正比,也就是 O(height)。


解答开篇



我们在散列表那节中讲过,散列表的插入、删除、查找操作的时间复杂度可以做到常量级的 O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是 O(logn),相对散列表,好像并没有什么优势,那我们为什么还要用二叉查找树呢?


我认为有下面几个原因:


第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。


第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。


第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。


第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。


最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。我们在实际的开发过程中,需要结合具体的需求来选择使用哪一个。


参考



23 | 二叉树基础(上):什么样的二叉树适合用数组来存储?


https://time.geekbang.org/column/article/67856


24 | 二叉树基础(下):有了如此高效的散列表,为什么还需要二叉树?


https://time.geekbang.org/column/article/68334


java/24_tree/BinarySearchTree.java · 编程语言算法集/algo - 码云 - 开源中国


https://gitee.com/TheAlgorithms/algo/blob/master/java/24_tree/BinarySearchTree.java


从2-3树到 红黑树_fei33423的专栏-CSDN博客从2-3树到 红黑树_fei33423的专栏-CSDN博客


https://blog.csdn.net/fei33423/article/details/79132930


目录
相关文章
|
存储 算法 数据库
数据结构与算法之九 树结构
数据结构与算法之九 树结构
65 0
|
6月前
|
算法 Python
Python 数据结构和算法:在 Python 中如何实现链表和树结构?
Python 数据结构和算法:在 Python 中如何实现链表和树结构?
69 0
|
5月前
数据结构篇:链表和树结构的操作方法
数据结构篇:链表和树结构的操作方法
49 0
|
5月前
|
存储 算法
数据结构学习记录——集合及运算(集合的表示、并查集、树结构表示集合、集合运算、查找函数、并运算)
数据结构学习记录——集合及运算(集合的表示、并查集、树结构表示集合、集合运算、查找函数、并运算)
33 0
|
6月前
|
存储 算法 Java
【数据结构】树结构(B树、23树、B+树)
【数据结构】树结构(B树、23树、B+树)
135 0
【数据结构】树结构(B树、23树、B+树)
|
6月前
|
搜索推荐
【数据结构】树结构应用(堆排序、赫夫曼树、赫夫曼编码)
【数据结构】树结构应用(堆排序、赫夫曼树、赫夫曼编码)
58 0
|
存储 算法
数据结构与算法(四):树结构
前面讲到的 顺序表、 栈和队列都是一对一的线性结构,这节讲一对多的线性结构——树。「一对多」就是指一个元素只能有一个前驱,但可以有多个后继。
82 0
数据结构121-树结构的认识
数据结构121-树结构的认识
43 0
数据结构121-树结构的认识
数据结构122-树结构的优点
数据结构122-树结构的优点
88 0
数据结构122-树结构的优点
数据结构124-树结构的表示
数据结构124-树结构的表示
50 0
数据结构124-树结构的表示

热门文章

最新文章

下一篇
无影云桌面