TensorFlow教程(4)-Attention机制

简介: TensorFlow教程(4)-Attention机制

原理介绍


1.png

图片1


2.png

图片2


3.png

图片3


更多资料:

https://distill.pub/2016/augmented-rnns/#attentional-interfaces

https://www.cnblogs.com/shixiangwan/p/7573589.html#top

http://baijiahao.baidu.com/s?id=1587926245504773589&wfr=spider&for=pc

https://talbaumel.github.io/blog/attention/

浅谈Attention-based Model【原理篇】


论文阅读


Hierarchical Attention Networks for Document Classification

这篇文章主要讲述了基于Attention机制实现文本分类


假设我们有很多新闻文档,这些文档属于三类:军事、体育、娱乐。其中有一个文档D有L个句子si(i代表s是文档D的第i个句子),每个句子包含Ti个词(word),wit代表第i个句子的word,t∈[0,T]


Word Encoder

①给定一个句子si,例如 The superstar is walking in the street,由下面表示[wi1,wi2,wi3,wi4,wi5,wi6,wi1,wi7],我们使用一个词嵌入矩阵W将单词编码为向量

4.png


②使用双向GRU编码整个句子关于单词wit的隐含向量:

5.png


那么最终隐含向量为前向隐含向量和后向隐含向量拼接在一起

6.png



Word Attention:

给定一句话,并不是这个句子中所有的单词对个句子语义起同等大小的“贡献”,比如上句话“The”,“is”等,这些词没有太大作用,因此我们需要使用attention机制来提炼那些比较重要的单词,通过赋予权重以提高他们的重要性。

①通过一个MLP获取hit的隐含表示:

7.png


②通过一个softmax函数获取归一化的权重:

8.png


③计算句子向量:

通过每个单词获取的hit与对应权重αit乘积,然后获取获得句子向量

9.png


代码实现


attenton.py


import tensorflow as tf
def attention(inputs, attention_size, time_major=False, return_alphas=False):
    if isinstance(inputs, tuple):
        # In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
        inputs = tf.concat(inputs, 2)
    if time_major:
        # (T,B,D) => (B,T,D)
        inputs = tf.array_ops.transpose(inputs, [1, 0, 2])
    hidden_size = inputs.shape[2].value  # D value - hidden size of the RNN layer
    # Trainable parameters
    w_omega = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
    b_omega = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
    u_omega = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
    with tf.name_scope('v'):
        # Applying fully connected layer with non-linear activation to each of the B*T timestamps;
        #  the shape of `v` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
        v = tf.tanh(tf.tensordot(inputs, w_omega, axes=1) + b_omega)
    # For each of the timestamps its vector of size A from `v` is reduced with `u` vector
    vu = tf.tensordot(v, u_omega, axes=1, name='vu')  # (B,T) shape
    alphas = tf.nn.softmax(vu, name='alphas')         # (B,T) shape
    # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
    output = tf.reduce_sum(inputs * tf.expand_dims(alphas, -1), 1)
    if not return_alphas:
        return output
    else:
        return output, alphas

train.py


from __future__ import print_function, division
import numpy as np
import tensorflow as tf
from keras.datasets import imdb
from tensorflow.contrib.rnn import GRUCell
from tensorflow.python.ops.rnn import bidirectional_dynamic_rnn as bi_rnn
from tqdm import tqdm
from attention import attention
from utils import get_vocabulary_size, fit_in_vocabulary, zero_pad, batch_generator
NUM_WORDS = 10000
INDEX_FROM = 3
SEQUENCE_LENGTH = 250
EMBEDDING_DIM = 100
HIDDEN_SIZE = 150
ATTENTION_SIZE = 50
KEEP_PROB = 0.8
BATCH_SIZE = 256
NUM_EPOCHS = 3  # Model easily overfits without pre-trained words embeddings, that's why train for a few epochs
DELTA = 0.5
MODEL_PATH = './model'
# Load the data set
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=NUM_WORDS, index_from=INDEX_FROM)
# Sequences pre-processing
vocabulary_size = get_vocabulary_size(X_train)
X_test = fit_in_vocabulary(X_test, vocabulary_size)
X_train = zero_pad(X_train, SEQUENCE_LENGTH)
X_test = zero_pad(X_test, SEQUENCE_LENGTH)
# Different placeholders
with tf.name_scope('Inputs'):
    batch_ph = tf.placeholder(tf.int32, [None, SEQUENCE_LENGTH], name='batch_ph')
    target_ph = tf.placeholder(tf.float32, [None], name='target_ph')
    seq_len_ph = tf.placeholder(tf.int32, [None], name='seq_len_ph')
    keep_prob_ph = tf.placeholder(tf.float32, name='keep_prob_ph')
# Embedding layer
with tf.name_scope('Embedding_layer'):
    embeddings_var = tf.Variable(tf.random_uniform([vocabulary_size, EMBEDDING_DIM], -1.0, 1.0), trainable=True)
    tf.summary.histogram('embeddings_var', embeddings_var)
    batch_embedded = tf.nn.embedding_lookup(embeddings_var, batch_ph)
# (Bi-)RNN layer(-s)
rnn_outputs, _ = bi_rnn(GRUCell(HIDDEN_SIZE), GRUCell(HIDDEN_SIZE),
                        inputs=batch_embedded, sequence_length=seq_len_ph, dtype=tf.float32)
tf.summary.histogram('RNN_outputs', rnn_outputs)
# Attention layer
with tf.name_scope('Attention_layer'):
    attention_output, alphas = attention(rnn_outputs, ATTENTION_SIZE, return_alphas=True)
    tf.summary.histogram('alphas', alphas)
# Dropout
drop = tf.nn.dropout(attention_output, keep_prob_ph)
# Fully connected layer
with tf.name_scope('Fully_connected_layer'):
    W = tf.Variable(tf.truncated_normal([HIDDEN_SIZE * 2, 1], stddev=0.1))  # Hidden size is multiplied by 2 for Bi-RNN
    b = tf.Variable(tf.constant(0., shape=[1]))
    y_hat = tf.nn.xw_plus_b(drop, W, b)
    y_hat = tf.squeeze(y_hat)
    tf.summary.histogram('W', W)
with tf.name_scope('Metrics'):
    # Cross-entropy loss and optimizer initialization
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_hat, labels=target_ph))
    tf.summary.scalar('loss', loss)
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-3).minimize(loss)
    # Accuracy metric
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.round(tf.sigmoid(y_hat)), target_ph), tf.float32))
    tf.summary.scalar('accuracy', accuracy)
merged = tf.summary.merge_all()
# Batch generators
train_batch_generator = batch_generator(X_train, y_train, BATCH_SIZE)
test_batch_generator = batch_generator(X_test, y_test, BATCH_SIZE)
train_writer = tf.summary.FileWriter('./logdir/train', accuracy.graph)
test_writer = tf.summary.FileWriter('./logdir/test', accuracy.graph)
session_conf = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
saver = tf.train.Saver()
if __name__ == "__main__":
    with tf.Session(config=session_conf) as sess:
        sess.run(tf.global_variables_initializer())
        print("Start learning...")
        for epoch in range(NUM_EPOCHS):
            loss_train = 0
            loss_test = 0
            accuracy_train = 0
            accuracy_test = 0
            print("epoch: {}\t".format(epoch), end="")
            # Training
            num_batches = X_train.shape[0] // BATCH_SIZE
            for b in tqdm(range(num_batches)):
                x_batch, y_batch = next(train_batch_generator)
                seq_len = np.array([list(x).index(0) + 1 for x in x_batch])  # actual lengths of sequences
                loss_tr, acc, _, summary = sess.run([loss, accuracy, optimizer, merged],
                                                    feed_dict={batch_ph: x_batch,
                                                               target_ph: y_batch,
                                                               seq_len_ph: seq_len,
                                                               keep_prob_ph: KEEP_PROB})
                accuracy_train += acc
                loss_train = loss_tr * DELTA + loss_train * (1 - DELTA)
                train_writer.add_summary(summary, b + num_batches * epoch)
            accuracy_train /= num_batches
            # Testing
            num_batches = X_test.shape[0] // BATCH_SIZE
            for b in tqdm(range(num_batches)):
                x_batch, y_batch = next(test_batch_generator)
                seq_len = np.array([list(x).index(0) + 1 for x in x_batch])  # actual lengths of sequences
                loss_test_batch, acc, summary = sess.run([loss, accuracy, merged],
                                                         feed_dict={batch_ph: x_batch,
                                                                    target_ph: y_batch,
                                                                    seq_len_ph: seq_len,
                                                                    keep_prob_ph: 1.0})
                accuracy_test += acc
                loss_test += loss_test_batch
                test_writer.add_summary(summary, b + num_batches * epoch)
            accuracy_test /= num_batches
            loss_test /= num_batches
            print("loss: {:.3f}, val_loss: {:.3f}, acc: {:.3f}, val_acc: {:.3f}".format(
                loss_train, loss_test, accuracy_train, accuracy_test
            ))
        train_writer.close()
        test_writer.close()
        saver.save(sess, MODEL_PATH)
        print("Run 'tensorboard --logdir=./logdir' to checkout tensorboard logs.")


utils.py


from __future__ import print_function
import numpy as np
def zero_pad(X, seq_len):
    return np.array([x[:seq_len - 1] + [0] * max(seq_len - len(x), 1) for x in X])
def get_vocabulary_size(X):
    return max([max(x) for x in X]) + 1  # plus the 0th word
def fit_in_vocabulary(X, voc_size):
    return [[w for w in x if w < voc_size] for x in X]
def batch_generator(X, y, batch_size):
    """Primitive batch generator 
    """
    size = X.shape[0]
    X_copy = X.copy()
    y_copy = y.copy()
    indices = np.arange(size)
    np.random.shuffle(indices)
    X_copy = X_copy[indices]
    y_copy = y_copy[indices]
    i = 0
    while True:
        if i + batch_size <= size:
            yield X_copy[i:i + batch_size], y_copy[i:i + batch_size]
            i += batch_size
        else:
            i = 0
            indices = np.arange(size)
            np.random.shuffle(indices)
            X_copy = X_copy[indices]
            y_copy = y_copy[indices]
            continue
if __name__ == "__main__":
    # Test batch generator
    gen = batch_generator(np.array(['a', 'b', 'c', 'd']), np.array([1, 2, 3, 4]), 2)
    for _ in range(8):
        xx, yy = next(gen)
        print(xx, yy)


代码地址:https://github.com/ilivans/tf-rnn-attention

运行结果:


10.png



在训练集上准确率达到96%,测试集达到86%,效果还是很强大


相关文章
|
TensorFlow 算法框架/工具 异构计算
Tensorflow数据读取机制
Tensorflow数据读取机制
60 0
|
12月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架教程:介绍一些流行的深度学习框架 (如TensorFlow、PyTorch等)
深度学习框架教程:介绍一些流行的深度学习框架 (如TensorFlow、PyTorch等)
143 0
|
XML TensorFlow API
TensorFlow Object Detection API 超详细教程和踩坑过程
TensorFlow Object Detection API 超详细教程和踩坑过程
198 1
|
机器学习/深度学习 并行计算 Ubuntu
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(下)
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(下)
195 0
|
机器学习/深度学习 并行计算 Ubuntu
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(上)
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(上)
152 0
|
机器学习/深度学习 存储 前端开发
使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别系统GUI界面 附代码 详细教程
使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别系统GUI界面 附代码 详细教程
329 0
使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别系统GUI界面 附代码 详细教程
BXA
|
机器学习/深度学习 自然语言处理 算法
Python深度学习:TensorFlow基础教程
深度学习是一种机器学习方法借助多层神经网络进行大规模数据分析和处理,以获取隐藏在数据中的特征模式,常应用于图像识别、语音识别、自然语言处理等领域
BXA
167 0
|
机器学习/深度学习 数据采集 自然语言处理
直观理解并使用Tensorflow实现Seq2Seq模型的注意机制(上)
直观理解并使用Tensorflow实现Seq2Seq模型的注意机制
264 1
直观理解并使用Tensorflow实现Seq2Seq模型的注意机制(上)
|
机器学习/深度学习 PyTorch TensorFlow
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)
|
机器学习/深度学习 Web App开发 IDE
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)
下一篇
无影云桌面