请求的处理是整个Tomcat的核心。深入了解Tomcat的请求过程,对于我们理解我们的应用项目,对于我们解决问题,对于我们今后开发项目都有深远的影响
如果看过Tomcat原理系列之二:由点到线,请求主干;一定对请求链具体走了哪些组件有了印象。我们再进一步拆解请求链,将链上涉及的类一一道来。
Connector
Connector组件作为Server的一部分,主要用于接收,解析http请求,并将请求封装成requset交给Container容器进行处理. Connector是如何接受请求的呢?
Connector使用ProtocolHandler(协议处理器)来处理请求的, 不同的ProtocolHandler处理不同模式的请求类型. 例如: Http11Protocol支持BIO类型的Socket来连接的, Http11NioProtocol支持NIO类型的NioSocket来连接的 ((基于Tomcat8)因为Tomcat高版本默认使用NIO模式,本文以NIO类型的处理来讲)
Http11NioProtocol:
通过Http11NioProtocol的构造方法. 我们可以看出,主要包括两大部分:Endpoint:端点, 也就是socket的请求的入口.ConnectionHandler: Connection 处理器
public Http11NioProtocol() { endpoint=new NioEndpoint();//端点 cHandler = new Http11ConnectionHandler(this);//connection处理器 ((NioEndpoint) endpoint).setHandler(cHandler); setSoLinger(Constants.DEFAULT_CONNECTION_LINGER); setSoTimeout(Constants.DEFAULT_CONNECTION_TIMEOUT); setTcpNoDelay(Constants.DEFAULT_TCP_NO_DELAY); }
1.Endpoint的NIO实现NioEndpoint
NioEndpoint是整个Tomcat的请求的入口. NioEndponit类中有个几个内部类非常重要,也是请求的必经之地.我们按照请求的走过的顺序一个个的解开看.
(不同版本的Tomcat可能有所不同,但是基本框架是类似的.)
1. Acceptor线程:
接收socket线程. Acceptor本身就是一个线程,run()方法里有while循环执行 serverSock.accept()接收线程. 此处有一个点要注意, 虽然是基于NIO的Endpoint但是这里还是阻塞式接收socket连接的方法. 也就是说会阻塞到serverSock.accept();
(1)当获取到SocketChannel对象后, 调用setSocketOptions(socket)方法, 将SocketChannel封装到NioChannel对象中. (2)并调用Poller的register(Niochannel socket)方法,将NioChannel进一步封装到NioSocketWrapper对象中, (3)最后在将NioSocketWrapper对象封装到PollerEvent对象压到Poller的 events队列里中去.
这里是一个典型的生产-消费者模式Acceptor 是events queue的生产者, Poller是envets queue的消费者.
(代码有删减,只把重要的提取出来)
@Override public void run() { while (running) { try { //接收线程(没有连接时阻塞在此处) socket = serverSock.accept(); } catch (IOException ioe) { } // Successful accept, reset the error delay errorDelay = 0; // Configure the socket if (running && !paused) { // setSocketOptions()======= 对socket进一步处理 if (!setSocketOptions(socket)) { closeSocket(socket); } } else { closeSocket(socket); } } catch (Throwable t) { ExceptionUtils.handleThrowable(t); log.error(sm.getString("endpoint.accept.fail"), t); } } state = AcceptorState.ENDED; }
2. Poller线程:
主要用于以较少的资源轮询已连接套接字以保持连接,当数据可用时转给worker工作线程. Poller线程run方法,while循环消费events queue里的PollerEvent事件 . 通过 event()方不断取出PollerEvent对象,然后将PollerEvent对象中的NioSocketWrapper包装类以OP_READ事件注册到Poller的Selector选择器去.{此处我们才真正看到NIO的影子} 在注册完OP_READ事件后. 紧接着执行**selector.selectedKeys()**方法将就绪的通道key返回,然后通过selectedKey访问就绪的通道. 取出NioSocketWrapper对象. 接着调用Poller的processKey()方法,根据sk是OPEN_READ事件或者OPEN_WRITE事件,调用NioEndpoint.processSocket()方法将NioSocketWrapper封装到SocketProcessor对象中, 并提交到NioEndpoint.executor线程池(Worker线程池)去执行
@Override public void run() { // Loop until destroy() is called while (true) { boolean hasEvents = false; try { if (!close) { hasEvents = events(); if (wakeupCounter.getAndSet(-1) > 0) { //if we are here, means we have other stuff to do //do a non blocking select keyCount = selector.selectNow(); } else { keyCount = selector.select(selectorTimeout); } wakeupCounter.set(0); } if (close) { events(); timeout(0, false); try { selector.close(); } catch (IOException ioe) { log.error(sm.getString("endpoint.nio.selectorCloseFail"), ioe); } break; } } catch (Throwable x) { ExceptionUtils.handleThrowable(x); log.error("",x); continue; } //either we timed out or we woke up, process events first if ( keyCount == 0 ) hasEvents = (hasEvents | events()); Iterator<SelectionKey> iterator = keyCount > 0 ? selector.selectedKeys().iterator() : null; // Walk through the collection of ready keys and dispatch // any active event. while (iterator != null && iterator.hasNext()) { SelectionKey sk = iterator.next(); NioSocketWrapper attachment = (NioSocketWrapper)sk.attachment(); // Attachment may be null if another thread has called // cancelledKey() if (attachment == null) { iterator.remove(); } else { iterator.remove(); processKey(sk, attachment); } }//while //process timeouts timeout(keyCount,hasEvents); }//while getStopLatch().countDown(); }
3.Worker线程组:
SocketProcessor处理socket连接的任务提交到worker线程池去执行
public boolean processSocket(SocketWrapperBase<S> socketWrapper, SocketEvent event, boolean dispatch) { try { if (socketWrapper == null) { return false; } SocketProcessorBase<S> sc = processorCache.pop(); if (sc == null) { sc = createSocketProcessor(socketWrapper, event); } else { sc.reset(socketWrapper, event); } Executor executor = getExecutor(); if (dispatch && executor != null) { executor.execute(sc);//将socket处理任务提交到worker线程池 } else { sc.run(); } } catch (RejectedExecutionException ree) { getLog().warn(sm.getString("endpoint.executor.fail", socketWrapper) , ree); return false; } catch (Throwable t) { ExceptionUtils.handleThrowable(t); // This means we got an OOM or similar creating a thread, or that // the pool and its queue are full getLog().error(sm.getString("endpoint.process.fail"), t); return false; } return true; }
4.SocketProcessor类:
NioEndpoint.SocketProcessor类作为一个任务, run()方法中,将socket的包装类NioEndpoint.NioSocketWrapper交给ProtocolHandler协议处理的ConnectionHandler进行处理
2.ConnectionHandler连接处理器
NioSocketWrapper 此时来到 ConnectionHandler这里.
Http11Processor Http协议处理器(http协议实现)
ConnectionHandler.process()方法,首先得到一个Http11Processor 处理器, 然后会将NioSocketWrapper交给Http11Processor 的进行处理
在这里我们回顾一个经典的问题:HTTP协议的组成部分,或者叫做HTTP协议的报文组成 1.请求行 2.请求头 3.空行 4.消息体
Http11Processor.service()方法中就是HTTP协议实现的地方. Http11Processor会创建一个Http11InputBuffer对象. Http11InputBuffer中的parseRequestLine、parseHeaders 和 parseHeader方法 会分别读取[请求行,请求头]
请求的读取去哪里了呢?? 对请求体的读取却不在这里. 而是将请求体的解析与读取延迟到Servlet中去了. 在调用getParameter,getParameterMap,getParameterNames,getParameterValues时会先调用parseParameters()方法解析请求参数. 这个放到以后再说.
Http11Processor的父类在初始化的时候,会创建Request对象,Response对象. 解析完请求行,请求头后. NioSocketWrapper对象此时变成了Request对象. 然后就开始下一程.
CoyoteAdapter:(Request,Response)
Http11Processor.service()方法处理后, 会调用CoyoteAdapter.service(request,repose) 对request,repose做一些预处理后,又开始了下一程connector.getService().getContainer().getPipeline().getFirst().invoke( request, response);
Container:(Request,Response)
Request,Response 对象层层经过Engine,Host,Context,Wrapper的valve.
Valve
Valve作为一个个基础的阀门,扮演着业务实际执行者的角色.
1.StandardWrapperValve(最后一个valve)
在StandardWrapperValve.invoke方法中会根据配置的Filter过滤器创建ApplicationFilterChain过滤器链.
ApplicationFilterChain filterChain = ApplicationFilterFactory.createFilterChain(request, wrapper, servlet);
然后执行过滤器链的doFilter方法
filterChain.doFilter(request.getRequest(), response.getResponse());
2.ApplicationFilterChain
ApplicationFilterChain使用责任了模式,执行过滤器的doFilter方法. 当执行完最后一个Filter方法后. 调用
servlet.service(request, response);
此时到了我们常见的servlet了.终于到了我们的业务代码了
总结:
socket ----->Connector接收socket连接封装成NioSocketWrapper对象----->ConnectionHandler取得HTTP协议内容,创建Requset,Reponse对象----->Container携带Requset,Reponse对象层级执行valve的invoke方法,到达最后一个StandardWrapperValve, 创建ApplicationFilterChain过滤器链, ----->ApplicationFilterChain过滤器链执行doFilter方法,执行完成后调用servlet.service()方法 ----->业务代码
个人理解有误差,望指出. Tomcat中涉及的细节很多.需要慢慢品味. 但是请求的大体行动路线,就如上描述的那样. 希望读者不断的去看源码挖掘更深的细节. 学习Tomact优秀的设计