分库分表如何做到不迁移数据?避免热点数据?(上)

简介: 分库分表如何做到不迁移数据?避免热点数据?

一、前言

中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种

垂直拆分比较简单,也就是本来一个数据库,数据量大之后,从业务角度进行拆分多个库。如下图,独立的拆分出订单库和用户库。

image.png

水平拆分的概念,是同一个业务数据量大之后,进行水平拆分。

image.png

上图中订单数据达到了4000万,我们也知道mysql单表存储量推荐是百万级,如果不进行处理,mysql单表数据太大,会导致性能变慢。使用方案可以参考数据进行水平拆分。把4000万数据拆分4张表或者更多。当然也可以分库,再分表;把压力从数据库层级分开。

二、分库分表方案

分库分表方案中有常用的方案,hash取模和range范围方案;分库分表方案最主要就是路由算法,把路由的key按照指定的算法进行路由存放。下边来介绍一下两个方案的特点。

1、hash取模方案

image.png

在我们设计系统之前,可以先预估一下大概这几年的订单量,如:4000万。每张表我们可以容纳1000万,也我们可以设计4张表进行存储。

那具体如何路由存储的呢?hash的方案就是对指定的路由key(如:id)对分表总数进行取模,上图中,id=12的订单,对4进行取模,也就是会得到0,那此订单会放到0表中。id=13的订单,取模得到为1,就会放到1表中。为什么对4取模,是因为分表总数是4。

  • 优点:

订单数据可以均匀的放到那4张表中,这样此订单进行操作时,就不会有热点问题。

热点的含义:热点的意思就是对订单进行操作集中到1个表中,其他表的操作很少。

订单有个特点就是时间属性,一般用户操作订单数据,都会集中到这段时间产生的订单。如果这段时间产生的订单 都在同一张订单表中,那就会形成热点,那张表的压力会比较大。

  • 缺点:

将来的数据迁移和扩容,会很难。

如:业务发展很好,订单量很大,超出了4000万的量,那我们就需要增加分表数。如果我们增加4个表

image.png

一旦我们增加了分表的总数,取模的基数就会变成8,以前id=12的订单按照此方案就会到4表中查询,但之前的此订单时在0表的,这样就导致了数据查不到。就是因为取模的基数产生了变化。

遇到这个情况,我们小伙伴想到的方案就是做数据迁移,把之前的4000万数据,重新做一个hash方案,放到新的规划分表中。也就是我们要做数据迁移。这个是很痛苦的事情。有些小公司可以接受晚上停机迁移,但大公司是不允许停机做数据迁移的。

当然做数据迁移可以结合自己的公司的业务,做一个工具进行,不过也带来了很多工作量,每次扩容都要做数据迁移

那有没有不需要做数据迁移的方案呢,我们看下面的方案

2、range范围方案

range方案也就是以范围进行拆分数据。

image.png

range方案比较简单,就是把一定范围内的订单,存放到一个表中;如上图id=12放到0表中,id=1300万的放到1表中。设计这个方案时就是前期把表的范围设计好。通过id进行路由存放。

  • 优点

我们小伙伴们想一下,此方案是不是有利于将来的扩容,不需要做数据迁移。即时再增加4张表,之前的4张表的范围不需要改变,id=12的还是在0表,id=1300万的还是在1表,新增的4张表他们的范围肯定是 大于 4000万之后的范围划分的。

  • 缺点

有热点问题,我们想一下,因为id的值会一直递增变大,那这段时间的订单是不是会一直在某一张表中,如id=1000万 ~ id=2000万之间,这段时间产生的订单是不是都会集中到此张表中,这个就导致1表过热,压力过大,而其他的表没有什么压力。

3、总结:

hash取模方案没有热点问题,但扩容迁移数据痛苦

range方案不需要迁移数据,但有热点问题。

那有什么方案可以做到两者的优点结合呢?即不需要迁移数据,又能解决数据热点的问题呢?

其实还有一个现实需求,能否根据服务器的性能以及存储高低,适当均匀调整存储呢?

image.png

三、方案思路

hash是可以解决数据均匀的问题,range可以解决数据迁移问题,那我们可以不可以两者相结合呢?利用这两者的特性呢?

我们考虑一下数据的扩容代表着,路由key(如id)的值变大了,这个是一定的,那我们先保证数据变大的时候,首先用range方案让数据落地到一个范围里面这样以后id再变大,那以前的数据是不需要迁移的

但又要考虑到数据均匀,那是不是可以在一定的范围内数据均匀的呢?因为我们每次的扩容肯定会事先设计好这次扩容的范围大小,我们只要保证这次的范围内的数据均匀是不是就ok了。

image.png

目录
相关文章
|
Java 中间件 数据库连接
分库分表的4种方案
分库分表的4种方案
1209 0
|
6月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
807 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
|
8月前
|
中间件 存储 SQL
分库分表优化:换中间件 二次查询
【7月更文挑战第7天】
70 15
|
8月前
|
SQL 数据处理
数据倾斜问题之WithDistmapjoin方案中热点数据和非热点数据的处理如何解决
数据倾斜问题之WithDistmapjoin方案中热点数据和非热点数据的处理如何解决
64 0
|
9月前
|
缓存 NoSQL Java
高并发场景下缓存+数据库双写不一致问题分析与解决方案设计
高并发场景下缓存+数据库双写不一致问题分析与解决方案设计
|
弹性计算 Java 关系型数据库
分库分表比较推荐的方案
ShardingSphere 绝对可以说是当前分库分表的首选!ShardingSphere 的功能完善,除了支持读写分离和分库分表,还提供分布式事务、数据库治理等功能。另外,ShardingSphere 的生态体系完善,社区活跃,文档完善,更新和发布比较频繁
244 0
|
10月前
|
存储 关系型数据库 MySQL
美柚:消息2.0引入PolarDB-M支撑大表并发和存储
美柚旗下的移动互联网软件包括美柚、宝宝记、柚子街等丰富的产品矩阵,为广大女性用户提供全面的健康管理、知识科普、线上购物、互联网医疗等服务。
|
10月前
|
SQL 安全 算法
在高并发情况下,如何做到安全的修改同一行数据?
在高并发情况下,如何做到安全的修改同一行数据?
|
存储 缓存 NoSQL
如何解决数据热点问题
如何解决数据热点问题
|
缓存 NoSQL 应用服务中间件
高并发场景下的redis缓存和数据库双写不一致问题分析与解决方案设计
高并发场景下的redis缓存和数据库双写不一致问题分析与解决方案设计
459 0