【人工智能】机器学习及与智能数据处理Python使用朴素贝叶斯算法对垃圾短信数据集进行分类

简介: 朴素贝叶斯算法输入:样本集合D={(x_1,y_1),(x_2,y_2)~(x_m,y_m); 待预测样本x; 样本标记的所有可能取值{c_1,c_2,c_3~c_k}; 样本输入变量X的每个属性变量X^i的所有可能取值{a_i1,a_i2,~,a_iAi}; 输出:待预测样本x所属的类别

朴素贝叶斯算法

输入:样本集合D={(x_1,y_1),(x_2,y_2)~(x_m,y_m);

       待预测样本x;
       样本标记的所有可能取值{c_1,c_2,c_3~c_k};
       样本输入变量X的每个属性变量X^i的所有可能取值{a_i1,a_i2,~,a_iAi};

输出:待预测样本x所属的类别
1.计算标记为c_k的样本出现概率。
在这里插入图片描述

2.计算标记c_k的样本,其X^i分量的属性值为a_ip的概率。

在这里插入图片描述

3.根据上面的估计值计算x属于y_k的概率值,并选择概率最大的作为输出。

在这里插入图片描述

1.使用sklearn的朴素贝叶斯算法对垃圾短信数据集进行分类

要求:

(1)划分训练集和测试集(测试集占20%)
(2)对测试集的预测类别标签和真实标签进行对比
(3)掌握特征提取方法
(4)输出分类的准确率

代码:

from sklearn.feature_extraction.text import CountVectorizer as CV
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB as NB
import pandas as pd
# 加载SMS垃圾短息数据集
with open('SMSSpamCollection.txt', 'r', encoding='utf8') as f:
    sms = [line.split('\t') for line in f]
y, x = zip(*sms)
# SMS垃圾短息数据集的特征提取
y = [label == 'spam' for label in y]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
counter = CV(token_pattern='[a-zA-Z]{2,}')
x_train = counter.fit_transform(x_train)
x_test = counter.transform(x_test)
# 朴素贝叶斯分类器的构造与训练
model = NB()
model.fit(x_train, y_train)
train_score = model.score(x_train, y_train)
test_score = model.score(x_test, y_test)
print('train score:', train_score)
print('test score:', test_score)
# 对测试集的预测类别标签和真实标签进行对比
y_predict = model.predict(x_test)
print('测试集的预测类别标签与真实标签的对比:\n', pd.concat([pd.DataFrame(x_test), pd.DataFrame(y_test), pd.DataFrame(y_predict)], axis=1))

结果:

在这里插入图片描述

2.自己写朴素贝叶斯算法对垃圾短信数据集进行分类

代码:

# coding = utf-8
import pandas as pd
import numpy as np
import random
import math


class bayesianClassifier(object):
    def __init__(self, ratio=0.7):

        self.trainset = []
        self.testset = []
        self.ratio = ratio

    def loadData(self, filepath):
        """
        :param filepath: csv
        :return: list
        """
        data_df = pd.read_csv(filepath)
        data_list = np.array(data_df).tolist()
        print("Loaded {0} samples secessfully.".format(len(data_list)))
        self.trainset, self.testset = self.splitData(data_list)
        return data_list

    def splitData(self, data_list):
        """
        :param data_list:all data with list type
        :param ratio: train date's ratio
        :return: list type of trainset and testset
        """
        train_size = int(len(data_list) * self.ratio)
        random.shuffle(data_list)
        self.trainset = data_list[:train_size]
        self.testset = data_list[train_size:]
        return self.trainset, self.testset

    def seprateByClass(self, dataset):
        """
        :param dataset: train data with list type
        :return: seprate_dict:separated data by class;
                info_dict:Number of samples per class(category)
        """
        seprate_dict = {}
        info_dict = {}
        for vector in dataset:
            if vector[-1] not in seprate_dict:
                seprate_dict[vector[-1]] = []
                info_dict[vector[-1]] = 0
            seprate_dict[vector[-1]].append(vector)
            info_dict[vector[-1]] += 1
        return seprate_dict, info_dict

    def mean(self, number_list):
        number_list = [float(x) for x in number_list]  # str to number
        return sum(number_list) / float(len(number_list))

    def var(self, number_list):
        number_list = [float(x) for x in number_list]
        avg = self.mean(number_list)
        var = sum([math.pow((x - avg), 2) for x in number_list]) / float(len(number_list) - 1)
        return var

    def summarizeAttribute(self, dataset):
        """
        calculate mean and var of per attribution in one class
        :param dataset: train data with list type
        :return: len(attribution)'s tuple ,that's (mean,var)  with per attribution
        """
        dataset = np.delete(dataset, -1, axis=1)  # delete label
        summaries = [(self.mean(attr), self.var(attr)) for attr in zip(*dataset)]
        return summaries

    def summarizeByClass(self, dataset):
        """
        calculate all class with per attribution
        :param dataset: train data with list type
        :return: num:len(class)*len(attribution)
                {class1:[(mean1,var1),(),...],class2:[(),(),...]...}
        """
        dataset_separated, dataset_info = self.seprateByClass(dataset)
        summarize_by_class = {}
        for classValue, vector in dataset_separated.items():
            summarize_by_class[classValue] = self.summarizeAttribute(vector)
        return summarize_by_class

    def calulateClassPriorProb(self, dataset, dataset_info):
        """
        calculate every class's prior probability
        :param dataset: train data with list type
        :param dataset_info: Number of samples per class(category)
        :return: dict type with every class's prior probability
        """
        dataset_prior_prob = {}
        sample_sum = len(dataset)
        for class_value, sample_nums in dataset_info.items():
            dataset_prior_prob[class_value] = sample_nums / float(sample_sum)
        return dataset_prior_prob

    def calculateProb(self, x, mean, var):
        """
        Continuous value using probability density function as class conditional probability
        :param x: one sample's one attribution
        :param mean: trainset's one attribution's mean
        :param var: trainset's one attribution's var
        :return: one sample's one attribution's class conditional probability
        """
        exponent = math.exp(math.pow((x - mean), 2) / (-2 * var))
        p = (1 / math.sqrt(2 * math.pi * var)) * exponent
        return p

    def calculateClassProb(self, input_data, train_Summary_by_class):
        """
        calculate class conditional probability through multiply
        every attribution's class conditional probability per class
        :param input_data: one sample vectors
        :param train_Summary_by_class: every class with every attribution's (mean,var)
        :return: dict type , class conditional probability per class of this input data belongs to which class
        """
        prob = {}
        p = 1
        for class_value, summary in train_Summary_by_class.items():
            prob[class_value] = 1
            for i in range(len(summary)):
                mean, var = summary[i]
                x = input_data[i]
                p = self.calculateProb(x, mean, var)
            prob[class_value] *= p
        return prob

    def bayesianPredictOneSample(self, input_data):
        """
        :param input_data: one sample without label
        :return: predicted class
        """
        train_separated, train_info = self.seprateByClass(self.trainset)
        prior_prob = self.calulateClassPriorProb(self.trainset, train_info)
        train_Summary_by_class = self.summarizeByClass(self.trainset)
        classprob_dict = self.calculateClassProb(input_data, train_Summary_by_class)
        result = {}
        for class_value, class_prob in classprob_dict.items():
            p = class_prob * prior_prob[class_value]
            result[class_value] = p
        return max(result, key=result.get)

    def calculateAccByBeyesian(self, ratio=0.7):
        """
        :param dataset: list type,test data
        :return: acc
        """
        self.ratio = ratio
        correct = 0
        for vector in self.testset:
            input_data = vector[:-1]
            label = vector[-1]
            result = self.bayesianPredictOneSample(input_data)
            if result == label:
                correct += 1
        return correct / len(self.testset)


if __name__ == "__main__":
    bys = bayesianClassifier()
    data_samples = bys.loadData('IrisData.csv')
    print("Accuracy is:", bys.calculateAccByBeyesian(ratio=0.7))

结果:

在这里插入图片描述

目录
相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
76 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
26天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
122 66
|
19天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
130 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
9天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
41 14
|
23天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
28天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
62 0
|
8月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
265 14
|
8月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
156 1
|
8月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
8月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
386 0

热门文章

最新文章