简述HashMap的原理

简介: 简述HashMap的原理

哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表。


1 什么是哈希表


在讨论哈希表之前,我们先大概了解下其他数据结构在新增、查找等基础操作执行性能:


数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找、插值查找、斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)。


线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)。


二叉树:对一棵相对平衡的有序二叉树,对其进行插入、查找、删除等操作,平均复杂度均为O(logn)。


哈希表:相比上述几种数据结构,在哈希表中进行添加、删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下(后面会探讨下哈希冲突的情况),仅需一次定位即可完成,时间复杂度为O(1),接下来我们就来看看哈希表是如何实现达到惊艳的常数阶O(1)的。


我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈、队列、树、图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组


比如我们要新增或查找某个元素,我们通过把当前元素的关键字,通过某个函数映射到数组中的某个位置,通过数组下标一次定位就可完成操作。这个函数可以简单描述为:存储位置 = f(关键字) ,这个函数f一般称为哈希函数,这个函数的设计好坏会直接影响到哈希表的优劣。


网络异常,图片无法展示
|


哈希冲突


然而万事无完美,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞


前面我们提到过,哈希函数的设计至关重要,好的哈希函数会尽可能地保证计算简单和散列地址分布均匀,但是,我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。


那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址)、再散列函数法、链地址法。而HashMap即是采用了链地址法,也就是数组+链表的方式。


2 JDK7的HashMap实现原理


HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)。Entry是HashMap中的一个静态内部类,是一个单链表结构。所以HashMap的总体结构如下:


网络异常,图片无法展示
|


简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null),那么查找、添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。


例如程序执行下面代码:


map.put("美团","小美");


系统将调用"美团"这个key的hashCode()方法得到其hashCode 值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算和取模运算)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。


如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。


其他几个重要字段:


/**实际存储的key-value键值对的个数*/
transient int size;
/**阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,
threshold一般为 capacity*loadFactory。HashMap在进行扩容时需要参考threshold,后面会详细谈到*/
int threshold;
/**负载因子,代表了table的填充度有多少,默认是0.75
加载因子存在的原因,还是因为减缓哈希冲突,如果初始桶为16,等到满16个元素才扩容,某些桶里可能就有不止一个元素了。
所以加载因子默认为0.75,也就是说大小为16的HashMap,到了第13个元素,就会扩容成32。
*/
final float loadFactor;
/**HashMap被改变的次数,由于HashMap非线程安全,在对HashMap进行迭代时,
如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),
需要抛出异常ConcurrentModificationException*/
transient int modCount;


Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。


当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容,扩容时,需要新建一个长度为之前数组2倍的新的数组,然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍,所以扩容相对来说是个耗资源的操作。


3 JDK1.8中HashMap的性能优化


这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。


于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。


HashMap put方法逻辑图(JDK1.8)


网络异常,图片无法展示
|


①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;


②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;


③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;


④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;


⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;


⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。


JDK1.8 HashMap的put方法源码如下:


public V put(K key, V value) {
      // 对key的hashCode()做hash
      return putVal(hash(key), key, value, false, true);
  }
  final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                 boolean evict) {
      Node<K,V>[] tab; Node<K,V> p; int n, i;
      // 步骤①:tab为空则创建
     if ((tab = table) == null || (n = tab.length) == 0)
         n = (tab = resize()).length;
     // 步骤②:计算index,并对null做处理 
     if ((p = tab[i = (n - 1) & hash]) == null) 
         tab[i] = newNode(hash, key, value, null);
     else {
         Node<K,V> e; K k;
         // 步骤③:节点key存在,直接覆盖value
         if (p.hash == hash &&
             ((k = p.key) == key || (key != null && key.equals(k))))
             e = p;
         // 步骤④:判断该链为红黑树
         else if (p instanceof TreeNode)
             e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
         // 步骤⑤:该链为链表
         else {
             for (int binCount = 0; ; ++binCount) {
                 if ((e = p.next) == null) {
                     p.next = newNode(hash, key,value,null);
                        //链表长度大于8转换为红黑树进行处理
                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
                         treeifyBin(tab, hash);
                     break;
                 }
                    // key已经存在直接覆盖value
                 if (e.hash == hash &&
                     ((k = e.key) == key || (key != null && key.equals(k))))                                       break;
                 p = e;
             }
         }         
         if (e != null) { // existing mapping for key
             V oldValue = e.value;
             if (!onlyIfAbsent || oldValue == null)
                 e.value = value;
             afterNodeAccess(e);
             return oldValue;
         }
     }
     ++modCount;
     // 步骤⑥:超过最大容量 就扩容
     if (++size > threshold)
         resize();
     afterNodeInsertion(evict);
     return null;
 }


4 小结


(1) 扩容是一个特别耗性能的操作,所以当程序在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。


(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。


(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。


(4) JDK1.8引入红黑树大程度优化了HashMap的性能。


(5) 还没升级JDK1.8的,现在开始升级吧。HashMap的性能提升仅仅是JDK1.8的冰山一角。



相关文章
|
6月前
|
存储 缓存 安全
面试题-HashMap底层原理与HashTable的区别
字节跳动面试题-HashMap底层原理与HashTable的区别
60 0
|
6月前
|
存储 算法 Java
【深入挖掘Java技术】「源码原理体系」盲点问题解析之HashMap工作原理全揭秘(下)
在阅读了上篇文章《【深入挖掘Java技术】「源码原理体系」盲点问题解析之HashMap工作原理全揭秘(上)》之后,相信您对HashMap的基本原理和基础结构已经有了初步的认识。接下来,我们将进一步深入探索HashMap的源码,揭示其深层次的技术细节。通过这次解析,您将更深入地理解HashMap的工作原理,掌握其核心实现。
60 0
【深入挖掘Java技术】「源码原理体系」盲点问题解析之HashMap工作原理全揭秘(下)
|
存储 算法 安全
HashMap底层实现原理
HashMap底层实现原理
164 0
|
24天前
|
机器学习/深度学习 算法
让星星⭐月亮告诉你,HashMap之tableSizeFor(int cap)方法原理详解(分2的n次幂和非2的n次幂两种情况讨论)
`HashMap` 的 `tableSizeFor(int cap)` 方法用于计算一个大于或等于给定容量 `cap` 的最小的 2 的幂次方值。该方法通过一系列的无符号右移和按位或运算,逐步将二进制数的高位全部置为 1,最后加 1 得到所需的 2 的幂次方值。具体步骤包括: 1. 将 `cap` 减 1,确保已经是 2 的幂次方的值直接返回。 2. 通过多次无符号右移和按位或运算,将最高位 1 后面的所有位都置为 1。 3. 最终加 1,确保返回值为 2 的幂次方。 该方法保证了 `HashMap` 的数组容量始终是 2 的幂次方,从而优化了哈希表的性能。
31 1
|
2月前
|
设计模式 安全 Java
HashMap底层原理:数据结构+put()流程+2的n次方+死循环+数据覆盖问题
假如有T1、T2两个线程同时对某链表扩容,他们都标记头结点和第二个结点,此时T2阻塞,T1执行完扩容后链表结点顺序反过来,此时T2恢复运行再进行翻转就会产生环形链表,即B.next=A;采用2的指数进行扩容,是为了利用位运算,提高扩容运算的效率。JDK8中,HashMap采用尾插法,扩容时链表节点位置不会翻转,解决了扩容死循环问题,但是性能差了一点,因为要遍历链表再查到尾部。例如15(即2^4-1)的二进制为1111,31的二进制为11111,63的二进制为111111,127的二进制为1111111。
HashMap底层原理:数据结构+put()流程+2的n次方+死循环+数据覆盖问题
|
6月前
|
Java
HashMap原理解析
HashMap原理解析
161 47
|
存储 安全 Java
java学会这些,我就入门啦!(基础篇六)HashMap、Hashtable、ConcurrentHashMap的原理与区别
java学会这些,我就入门啦!(基础篇六)HashMap、Hashtable、ConcurrentHashMap的原理与区别
|
6月前
|
存储 缓存 安全
Java HashMap:哈希表原理、性能与优化
Java HashMap:哈希表原理、性能与优化
256 1
|
6月前
|
存储 安全 Java
【深入挖掘Java技术】「源码原理体系」盲点问题解析之HashMap工作原理全揭秘(上)
HashMap是基于Map接口构建的数据结构,它以键值对的形式存储元素,允许键和值都为null。由于键的唯一性,HashMap中只能有一个键为null。HashMap的特点是元素的无序性和不重复性。
65 1
【深入挖掘Java技术】「源码原理体系」盲点问题解析之HashMap工作原理全揭秘(上)