邻接表表示法将图以邻接表(adjacency lists)的形式存储在计算机中。所谓图的邻接表,也就是图的所有节点的邻接表的集合;而对每个节点,它的邻接表就是它的所有出弧。邻接表表示法就是对图的每个节点,用一个单向链表列出从该节点出发的所有弧,链表中每个单元对应于一条出弧。为了记录弧上的权,链表中每个单元除列出弧的另一个端点外,还可以包含弧上的权等作为数据域。图的整个邻接表可以用一个指针数组表示。例如下图所示,邻接表表示为
邻接链表
广度优先搜索
基本思路
- 把根节点放到队列的末尾。
- 每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱。
- 找到所要找的元素时结束程序。
- 如果遍历整个树还没有找到,结束程序。
代码实现
//http://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph/ // Program to print BFS traversal from a given source vertex. BFS(int s) // traverses vertices reachable from s. #include<iostream> #include <list> using namespace std; // This class represents a directed graph using adjacency list representation class Graph { int V; // No. of vertices list<int> *adj; // Pointer to an array containing adjacency lists public: Graph(int V); // Constructor void addEdge(int v, int w); // function to add an edge to graph void BFS(int s); // prints BFS traversal from a given source s }; Graph::Graph(int V) { this->V = V; adj = new list<int>[V]; } void Graph::addEdge(int v, int w) { adj[v].push_back(w); // Add w to v’s list. } void Graph::BFS(int s) { // Mark all the vertices as not visited bool *visited = new bool[V]; for(int i = 0; i < V; i++) visited[i] = false; // Create a queue for BFS list<int> queue; // Mark the current node as visited and enqueue it visited[s] = true; queue.push_back(s); // 'i' will be used to get all adjacent vertices of a vertex list<int>::iterator i; while(!queue.empty()) { // Dequeue a vertex from queue and print it s = queue.front(); cout << s << " "; queue.pop_front(); // Get all adjacent vertices of the dequeued vertex s // If a adjacent has not been visited, then mark it visited // and enqueue it for(i = adj[s].begin(); i != adj[s].end(); ++i) { if(!visited[*i]) { visited[*i] = true; queue.push_back(*i); } } } } // Driver program to test methods of graph class int main() { // Create a graph given in the above diagram Graph g(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(2, 3); g.addEdge(3, 3); cout << "Following is Breadth First Traversal " << "(starting from vertex 2) n:"; g.BFS(2); return 0; }
深度优先搜索
基本思路
- 访问顶点v;
- 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
- 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历
代码实现
//http://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/ // C++ program to print DFS traversal from a given vertex in a given graph #include<iostream> #include<list> using namespace std; // Graph class represents a directed graph using adjacency list representation class Graph { int V; // No. of vertices list<int> *adj; // Pointer to an array containing adjacency lists void DFSUtil(int v, bool visited[]); // A function used by DFS public: Graph(int V); // Constructor void addEdge(int v, int w); // function to add an edge to graph void DFS(int v); // DFS traversal of the vertices reachable from v }; Graph::Graph(int V) { this->V = V; adj = new list<int>[V]; } void Graph::addEdge(int v, int w) { adj[v].push_back(w); // Add w to v’s list. } void Graph::DFSUtil(int v, bool visited[]) { // Mark the current node as visited and print it visited[v] = true; cout << v << " "; // Recur for all the vertices adjacent to this vertex list<int>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) DFSUtil(*i, visited); } // DFS traversal of the vertices reachable from v. // It uses recursive DFSUtil() void Graph::DFS(int v) { // Mark all the vertices as not visited bool *visited = new bool[V]; for (int i = 0; i < V; i++) visited[i] = false; // Call the recursive helper function to print DFS traversal DFSUtil(v, visited); } int main() { // Create a graph given in the above diagram Graph g(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(2, 3); g.addEdge(3, 3); cout << "Following is Depth First Traversal (starting from vertex 2) n:"; g.DFS(2); return 0; }
运行结果
输入
广度优先搜索
深度优先搜索
也可以试试从其他定点(0,1,3)开始遍历☺
参考