用Python爬取分析【某东618】畅销商品销量数据,带你看看大家都喜欢买什么!

简介: 618购物节,辰哥准备分析一波购物节大家都喜欢买什么?本文以某东为例,Python**爬取**618活动的畅销商品数据,并进行**数据清洗**,最后以**可视化**的方式从不同角度去了解畅销商品中,名列前茅的商品是哪些?销售数据如何?用户好评如何?等等

618购物节,辰哥准备分析一波购物节大家都喜欢买什么?本文以某东为例,Python爬取618活动的畅销商品数据,并进行数据清洗,最后以可视化的方式从不同角度去了解畅销商品中,名列前茅的商品是哪些?销售数据如何?用户好评如何?等等

本文结构如下

1、爬取某东畅销商品数据

2、清洗数据并并进行简单分析

3、将数据进行可视化展示

数据的字段如下:

一共爬取了243条某东畅销商品数据

01、获取数据

1.   分析网页

在编写代码之前,先来分析一波网页。

上面是某东的畅销商品,通过辰哥分析分析,该网页有异步加载(前面10个商品是静态加载,剩下的是动态异步加载),因此我们需要写了个请求去获取数据。

2.   获取静态网页商品链接

商品的销售、评论等数据在商品详情页,这里先获取商品详情页链接

结果如下:

3.   获取动态网页商品链接

通过抓包可以获取到动态加载链接,并获取到商品标题和商品id(这里的商品id可以用于后面拼接商品详情页链接)

获取json数据后,提取出商品标题商品ID

4. 获取打折、原价、秒杀价

通过商品ID可以获取到商品打折、原价、秒杀价(这里有接口,接口是通过抓包获取的,感兴趣的可以去自己去尝试,不明白的可以直接使用)

这里将该功能封装成函数,通过传入商品ID就可以获取该商品的商品打折、原价、秒杀价

结果如下:

5. 获取评论数、好评数、中评数、差评数、好评率

通过商品ID可以获取到评论数、好评数、中评数、差评数、好评率(同样这里有接口,接口是通过抓包获取的,感兴趣的可以去自己去尝试,不明白的可以直接使用)

结果如下:

6.   保存到excel

接着开始遍历商品,并通过ID去获取商品的销售情况(步骤4和步骤5的函数),最后把数据保存到execl

定义表头

写入数据

其中的get_price和CommentCount是步骤4和步骤5的函数。count是excel中行数,因此在循环中count+1,依次写入下一行。

最终保存结果

一共爬取了243条某东畅销商品数据

02、数据分析&可视化

1.数据清洗

需要清洗的内容,主要有图中这三列(标题、打折、好评数)。

清洗目标

  1. 标题过长(长度控制在10内),不方便后面的画图
  2. 打折字段中含有折字,在进行排序时不能直接转数值型。
  3. 好评数中的,转为具体数值,如1.2万转为12000

清洗结果:

2.可视化-商品打折力度

从清洗后数据中取出:商品名称和打折这两列,进行【排序】从打折最大到打折最小。最后取出前15名进行可视化

核心代码如下:

可视化效果

3.可视化-好评率统计

从数据中取出:好评率这列,对不同的好评率进行统计,如好评率是100%(1)的商品多少件,好评率99%(0.99)的商品多少件等。

核心代码如下:

可视化效果

3.可视化-畅销商品销量排行

从数据中取出:商品名称和评论数这两列,这里根据评论数去作为销售依据,对商品的销量进行排序(高到低),并取出前15名进行可视化。

核心代码如下:

可视化效果

4.可视化-畅销商品前15名原价与秒杀价对比

在上面的分析中可以知道畅销商品的销量前15名,这里将这15件商品的原价和秒杀价进行可视化对比。

核心代码如下:

可视化效果

03、小结

本文以某东为例,Python爬取618活动的畅销商品数据,并进行数据清洗,最后以可视化的方式从不同角度去了解畅销商品中,名列前茅的商品是哪些?销售数据如何?用户好评如何?等等

不明白的地方可以在下方留言,一起交流。

相关文章
|
16天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
18天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
25天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
80 7
|
25天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
29 3
|
25天前
|
存储 数据采集 数据库
用 Python 爬取淘宝商品价格信息时需要注意什么?
使用 Python 爬取淘宝商品价格信息时,需注意法律和道德规范,遵守法律法规和平台规定,避免非法用途。技术上,可选择 Selenium 和 Requests 库,处理反爬措施如 IP 限制、验证码识别和请求频率控制。解析页面数据时,确定数据位置并清洗格式。数据存储可选择 CSV、Excel、JSON 或数据库,定期更新并去重。还需进行错误处理和日志记录,确保爬虫稳定运行。
|
25天前
|
数据采集 Web App开发 iOS开发
如何利用 Python 的爬虫技术获取淘宝天猫商品的价格信息?
本文介绍了使用 Python 爬虫技术获取淘宝天猫商品价格信息的两种方法。方法一使用 Selenium 模拟浏览器操作,通过定位页面元素获取价格;方法二使用 Requests 和正则表达式直接请求页面内容并提取价格。每种方法都有详细步骤和代码示例,但需注意反爬措施和法律法规。
|
25天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
42 2
|
25天前
|
数据采集 存储 Web App开发
利用Python 的爬虫技术淘宝天猫销量和库存
使用 Python 爬虫技术获取淘宝天猫商品销量和库存的步骤包括:1. 安装 Python 和相关库(如 selenium、pandas),下载浏览器驱动;2. 使用 selenium 登录淘宝或天猫;3. 访问商品页面,分析网页结构,提取销量和库存信息;4. 处理和存储数据。注意网页结构可能变化,需遵守法律法规。
|
2月前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
下一篇
无影云桌面