Spark工作原理及基础概念(超详细!)上

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 笔记

一、Spark概述


(1)概述

Spark,是一种"One Stack to rule them all"的大数据计算框架,期望使用一个技术堆栈就完美地解决大数据领域的各种计算任务。Apache官方,对Spark的定义就是:通用的大数据快速处理引擎。

Spark使用Spark RDD、Spark SQL、 Spark Streaming,MLlib,GraphX成功解决了大数据领城中,离线批处理、交互式查询、实时流计算、机器学习与图计算等最重要的任务和问题。

Spark除了一站式的特点之外,另外一个最重要的特点,就是基于内存进行计算,从而让它的速度可以达到MapReduce、Hive的数倍甚至数十倍!

现在已经有很多大公司正在生产环境下深度地使用Spark作为大数据的计算框架,包括eBay.Yahool、 BAT、网易、京东、华为、大众点评、优酷土豆、搜狗等等。

Spark同时也获得了多个世界顶级IT厂商的支持,包括IBM、 Intel等。


Spark,是一种通用的大数据计算框架,I正如传统大数据技术Hadoop的MapReduce、Hive引擎,以及Storm流式实时计算引擎等,

Spark包含了大数据领城常见的各种计算框架:比如Spark Core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MILlib用于机器学习,Spark GraphX用于图计算。

Spark主要用于大数据的计算,而Hadoop以后主要用于大数据的存储(比如HDFS、Hive,HBase等),以及资源调度(Yarn)。

Spark+Hadoop的组合,是未来大数据领域最热门的组合,也是最有前景的组合!


(2)Spark整体架构


1.png

(3)Spark特性


2.png

(1)spark 计算速度快


spark将每个任务构建成DAG进行计算,内部的计算过程通过弹性式分布式数据集RDD在内存在进行计算,相比于hadoop的mapreduce效率提升了100倍。


(2)易于使用


spark 提供了大量的算子,开发只需调用相关api进行实现无法关注底层的实现原理。


通用的大数据解决方案


相较于以前离线任务采用mapreduce实现,实时任务采用storm实现,目前这些都可以通过spark来实现,降低来开发的成本。同时spark 通过spark SQL降低了用户的学习使用门槛,还提供了机器学习,图计算引擎等。


(3)支持多种的资源管理模式


学习使用中可以采用local 模型进行任务的调试,在正式环境中又提供了standalone,yarn等模式,方便用户选择合适的资源管理模式进行适配。


(4)社区支持


spark 生态圈丰富,迭代更新快,成为大数据领域必备的计算引擎。


(4)Spark与MR

MapReduce能够完成的各种离线批处理功能,以及常见算法(比如二次排序、topn等),基于Spark RDD的核心编程,都可以实现,并且可以更好地、更容易地实现。而且基于Spark RDD编写的离线批处理程序,运行速度是MapReduce的数倍,速度上有非常明显的优势。

Spark相较于MapReduce速度快的最主要原因就在于,MapReduce的计算模型太死板,必须是map-reduce模式,有时候即使完成一些诸如过滤之类的操作,也必须经过map-reduce过程,这样就必须经过shuffle过程。而

MapReduce的shuffle过程是最消耗性能的,因为shuffle中间的过程必须基于磁盘来读写。而Spark的shuffle虽然也要基于磁盘,但是其大量transformation操作,比如单纯的map或者filter等操作,可以直接基于内存进行pipeline操作,速度性能自然大大提升。

但是Spark也有其劣势。由于Spark基于内存进行计算,虽然开发容易,但是真正面对大数据的时候(比如一次操作针对10亿以上级别),在没有进行调优的情况下,可能会出现各种各样的问题,比如OOM内存溢出等等。导致Spark程序可能都无法完全运行起来,就报错挂掉了,而MapReduce即使是运行缓慢,但是至少可以慢慢运行完。

此外,Spark由于是新崛起的技术新秀,因此在大数据领域的完善程度,肯定不如MapReduce,比如基于HBase、Hive作为离线批处理程序的输入输出,Spark就远没有MapReduce来的完善。实现起来非常麻烦。


(5)Spark Streaming与Storm

Spark Streaming 与Storm都可以用于进行实时流计算。但是他们两者的区别是非常大的。其中区别之一,就是,Spark

Streaming 和Storm的计算模型完全不一样,Spark Streaming是基于RDD的,因此需要将一小段时间内的,比如1秒内的数据,收集起来,作为一个RDD,然后再针对这个batch的数据进行处理。而Storm却可以做到每来一条数据,都可以立即进行处理和计算。因此,Spark Streaming实际上严格意义上来说,只能称作准实时的流计算框架;西Storm是真正意义上的实时计算框架

此外,Storm支持的一项高级特性,是Spark Streaming暂时不具备的,即Storm支持在分布式流式计算程序(Topolopy)在运行过程中,可以动态地调整并行度,从而动态提高并发处理能力。而Spark Streaming是无法动态调整并行度的。

但是Spark Streaming也有其优点,首先Spark Streaming由于是基于batch进行处理的,因此相较于Storm基于单条数据进行处理,具有数倍甚至数十倍的吞吐量。

此外,Spark Streaming由于也身处于Spark生态圈内,因此Spark Streaming可以与Spark Core、 Spark SQL,甚至是Spark Mllib.Spark GraphX进行无缝整合。流式处理完的数据,可以立即进行各种map、reduce转换操作,可以立即使用sql进行查询,甚至可以立即使用machine learning或者图计算算法进行处理。这种一站式的大数据处理功能和优势,是Storm无法匹敌的。

因此,综合上述来看,通常在对实时性要求特别高,而且实时数据量不稳定,比如在白天有高峰期的情况下,可以选择使用Storm。但是如果是对实时性要求一般,允许1秒的准实时处理,而且不要求动态调整并行度的话,选择Spark Streaming是更好的选择。


(6)Spark SQL与Hive

Spark SQL实际上并不能完全替代Hive,因为Hive是一种基于HDFS的数据仓库,并且提供了基于SQL模型的,针对存储了大数据的数据仓库,进行分布式交互查询的查询引擎。

严格的来说, Spark SQL能够替代的,是ive的查询引擎,而不是Hive本身,实际上即使在生产环境下, SparkSQL也是针对Hive数据仓库中的数据进行查询, Spark本身自己是不提供存储的,自然也不可能替代Hive作为数据仓库的这个功能。

Spark SQL的一个优点,相较于Hive查询引擎来说,就是速度快,同样的SQL语句,可能使用Hive的查询引擎,由于其底层基于 MapReduce,必须经过 shuffle过程走磁盘,因此速度是非常缓慢的。很多复杂的SQL语句,在hive中执行都需要一个小时以上的时间。而 Spark SQLSpark由于其底层基于自身的基于内存的特点,因此速度达到了Hive查询引擎的数倍以上。

而 Spark SQL相较于Hive的另外一个优点,就是支持大量不同的数据源,包括ive、json、 parquet、jdbc等等此外, Spark SQLSpark由于身处技术堆栈内,也是基于RDD来工作,因此可以与 Spark的其他组件无缝整合使用,配合起来实现许多复杂的功能。比如 Spark SQL支持可以直接针对hdfs文件执行sq语句!


二、Spark基本原理


(1)Spark Core

Spark Core是Spark的核心,其包含如下几个部分:

3.png

(1)spark 基础配置


sparkContext是spark应用程序的入口,spark应用程序的提交和执行离不开sparkContext,它隐藏了网络通信,分布式部署,消息通信,存储体系,计算存储等,开发人员只需要通过sparkContext等api进行开发即可。


sparkRpc 基于netty实现,分为异步和同步两种方式。事件总线主要用于sparkContext组件间的交换,它属于监听者模式,采用异步调用。度量系统主要用于系统的运行监控。


(2)spark 存储系统


它用于管理spark运行中依赖的数据存储方式和存储位置,spark的存储系统优先考虑在各节点以内存的方式存储数据,内存不足时将数据写入磁盘中,这也是spark计算性能高的重要原因。


我们可以灵活的控制数据存储在内存还是磁盘中,同时可以通过远程网络调用将结果输出到远程存储中,比如hdfs,hbase等。


(3)spark 调度系统


spark 调度系统主要由DAGScheduler和TaskScheduler组成。


DAGScheduler 主要是把一个Job根据RDD间的依赖关系,划分为多个Stage,对于划分后的每个Stage都抽象为一个或多个Task组成的任务集,并交给TaskScheduler来进行进一步的任务调度。而TaskScheduler 负责对每个具体的Task进行调度。


具体调度算法有FIFO,FAIR:


FIFO调度:先进先出,这是Spark默认的调度模式。

FAIR调度:支持将作业分组到池中,并为每个池设置不同的调度权重,任务可以按照权重来决定执行顺序。


(2)Spark SQL

spark sql提供了基于sql的数据处理方法,使得分布式的数据集处理变的更加简单,这也是spark 广泛使用的重要原因。


目前大数据相关计算引擎一个重要的评价指标就是:是否支持sql,这样才会降低使用者的门槛。spark sql提供了两种抽象的数据集合DataFrame和DataSet。


DataFrame 是spark Sql 对结构化数据的抽象,可以简单的理解为spark中的表,相比较于RDD多了数据的表结构信息(schema).DataFrame = Data + schema


RDD是分布式对象集合,DataFrame是分布式Row的集合,提供了比RDD更丰富的算子,同时提升了数据的执行效率。


DataSet 是数据的分布式集合 ,它具有RDD强类型的优点 和Spark SQL优化后执行的优点。DataSet可以由jvm对象构建,然后使用map,filter,flatmap等操作函数操作。


关于Spark SQL可以看这篇文章:

https://blog.csdn.net/weixin_45366499/article/details/108749586


(3)Spark Streaming

这个模块主要是对流数据的处理,支持流数据的可伸缩和容错处理,可以与Flume和Kafka等已建立的数据源集成。Spark Streaming的实现,也使用RDD抽象的概念,使得在为流数据编写应用程序时更为方便。


关于Spark Streaming可以看这篇文章:

https://blog.csdn.net/weixin_45366499/article/details/108816335


(4)Spark基本工作原理

Spark基本工作原理的理解,其最主要的是要搞清楚什么是RDD以及RDD的特性。深刻理解了RDD的特性,也就理解了数据在spark中是如何被处理的(spark的基本工作原理)


那么RDD是什么,官方说法:

RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集。


最简单的理解:

RDD就是源数据的抽象,或者叫映射,或者就代表。也就是说,数据要被spark进行处理,在处理之前的首要任务就是要将数据映射成RDD,对于spark来说,RDD才是我们处理数据的规则,我只认RDD,只有RDD,通过我spark的计算引擎,才能发挥巨大的威力!


(1)分布式数据集

RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集。


RDD在抽象上来说是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作。

4.png


(2)弹性

RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。


5.png

(3)迭代式处理

6.png

对节点1、2、3、4上的数据进行处理完成之后,可能会移动到其他的节点内存中继续处理!Spark 与Mr最大的不同在与迭代式计算模型:Mr分为两个阶段,map和reduce,两个阶段处理完了就结束了,所以我们在一个job中能做的处理很有限,只能在map和reduce中处理;而spark计算过程可以分为n个阶段,因为他是内存迭代式的,我们在处理完一个阶段之后,可以继续往下处理很多阶段,而不是两个阶段。所以Spark相较于MR,计算模型可以提供更强大的功能。


(4)容错性

RDD最重要的特性就是,提供了容错性,可以自动从节点失败中恢复过来。即如果某个节点上的RDD partition,因为节点故障,导致数据丢了,那么RDD会自动通过自己的数据来源重新计算该partition。这一切对使用者是透明的。

7.png


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
移动开发 分布式计算 Spark
Spark的几种去重的原理分析
Spark的几种去重的原理分析
313 0
|
机器学习/深度学习 SQL 分布式计算
Spark核心原理与应用场景解析:面试经验与必备知识点解析
本文深入探讨Spark核心原理(RDD、DAG、内存计算、容错机制)和生态系统(Spark SQL、MLlib、Streaming),并分析其在大规模数据处理、机器学习及实时流处理中的应用。通过代码示例展示DataFrame操作,帮助读者准备面试,同时强调结合个人经验、行业趋势和技术发展以展现全面的技术实力。
1321 0
|
存储 分布式计算 数据处理
bigdata-35-Spark工作原理
bigdata-35-Spark工作原理
81 0
|
12月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
132 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
12月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
221 0
|
12月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
204 0
|
12月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
250 0
|
12月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
197 0
|
存储 分布式计算 监控
|
SQL 存储 分布式计算
spark执行sql的原理是什么
spark执行sql的原理是什么
292 1

热门文章

最新文章