Python - 如何将 list 列表作为数据结构使用

简介: Python - 如何将 list 列表作为数据结构使用

列表作为栈使用


栈的特点

先进后出,后进先出

image.png

如何模拟栈?

  • 先在堆栈尾部添加元素,使用 append()
  • 然后从堆栈顶部取出一个元素,使用 pop()
# 模拟栈
stack = [1, 2, 3, 4, 5]
# 进栈
stack.append(6)
stack.append(7)
# 查看栈
print(stack)
# 出栈
print(stack.pop())
print(stack)
# 输出结果
[1, 2, 3, 4, 5, 6, 7]
7
[1, 2, 3, 4, 5, 6]


列表作为队列使用


队列的特点

先进先出,后进后出

 

list 能实现队列吗?

可以,但不推荐

  • 列表用作先进先出的场景非常低效
  • 因为在列表的末尾进行添加、移出元素非常快
  • 但是在列表的头部添加、移出元素缺很慢,因为列表其余元素都必须移动一位

 

如何模拟队列?

使用 collections.deque ,它被设计成可以快速从两端添加或弹出元素

# collections.deque
from collections import deque
# 声明队列
queue = deque(["polo", "yy", "mike"])
# 插入队列
queue.append("ok")
queue.append("world")
print(queue)
# 移出队列
print(queue.popleft())
print(queue.popleft())
# 输出结果
deque(['polo', 'yy', 'mike', 'ok', 'world'])
polo
yy
相关文章
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
423 0
|
2月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
171 4
|
3月前
|
存储 消息中间件 NoSQL
【Redis】常用数据结构之List篇:从常用命令到典型使用场景
本文将系统探讨 Redis List 的核心特性、完整命令体系、底层存储实现以及典型实践场景,为读者构建从理论到应用的完整认知框架,助力开发者在实际业务中高效运用这一数据结构解决问题。
|
5月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
170 1
|
8月前
|
索引 Python
Python错误 - 'list' object is not callable 的问题定位与解决
出现编程问题并不可怕,关键在于是否可以从中学习与成长。遇到'list' object is not callable这样的错误,我们不仅需要学会应对,更需要了解其背后的原因,避免类似的问题再次出现。记住,Python的强大功能和灵活性同时也意味着我们需要对其理解更准确,才能更好的使用它。
968 70
|
9月前
|
人工智能 Java
Java 中数组Array和列表List的转换
本文介绍了数组与列表之间的相互转换方法,主要包括三部分:1)使用`Collections.addAll()`方法将数组转为列表,适用于引用类型,效率较高;2)通过`new ArrayList<>()`构造器结合`Arrays.asList()`实现类似功能;3)利用JDK8的`Stream`流式计算,支持基本数据类型数组的转换。此外,还详细讲解了列表转数组的方法,如借助`Stream`实现不同类型数组间的转换,并附带代码示例与执行结果,帮助读者深入理解两种数据结构的互转技巧。
620 1
Java 中数组Array和列表List的转换
|
12月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
322 66
|
9月前
|
存储 人工智能 索引
Python数据结构:列表、元组、字典、集合
Python 中的列表、元组、字典和集合是常用数据结构。列表(List)是有序可变集合,支持增删改查操作;元组(Tuple)与列表类似但不可变,适合存储固定数据;字典(Dictionary)以键值对形式存储,无序可变,便于快速查找和修改;集合(Set)为无序不重复集合,支持高效集合运算如并集、交集等。根据需求选择合适的数据结构,可提升代码效率与可读性。

推荐镜像

更多