「LeetCode」617-合并二叉树⚡️

简介: 「LeetCode」617-合并二叉树⚡️

image.png

前言🌧️


算法,对前端人来说陌生又熟悉,很多时候我们都不会像后端工程师一样重视这项能力。但事实上,算法对每一个程序员来说,都有着不可撼动的地位。


因为开发的过程就是把实际问题转换成计算机可识别的指令,也就是《数据结构》里说的,「设计出数据结构,在施加以算法就行了」。


编写指令的好坏,会直接影响到程序的性能优劣,而指令又由数据结构和算法组成,所以数据结构和算法的设计基本上决定了最终程序的好坏


题目🦀


617. 合并二叉树


难度简单


给你两棵二叉树: root1root2


想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。


返回合并后的二叉树。


注意: 合并过程必须从两个树的根节点开始。


示例 1:


image.png



输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]

示例 2:


输入:root1 = [1], root2 = [1,2]
输出:[2,2]

提示:

  • 两棵树中的节点数目在范围 [0, 2000]
  • -104 <= Node.val <= 104


解题思路🌵


  • 采用前序遍历解决此题
  • 需要注意的是传入的参数,以及边界条件的处理
  • 当左结点为空时,返回右结点
  • 当右结点为空时,返回左结点
  • 当都不会空时,创建新结点,将左右结点值相加并赋值给新结点
  • 再进行递归调用


解题步骤🐂


  • 处理边界条件 root1为空 返回root2
  • 处理边界条件 root2为空 返回root1
  • 都不为空,创建新结点
  • 再此递归调用得到 treeNode.left
  • 再此递归调用得到 treeNode.right


源码🔥


/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root1
 * @param {TreeNode} root2
 * @return {TreeNode}
 */
var mergeTrees = function(root1, root2) {
    if(!root1){
        return root2
    }
     if(!root2){
        return root1
    }
    const treeNode = new TreeNode(root1.val+root2.val)
    treeNode.left = mergeTrees(root1.left,root2.left)
    treeNode.right = mergeTrees(root1.right,root2.right)
    return treeNode
};

时间复杂度:O(n)


空间复杂度:O(n)


结束语🌞


image.png


那么鱼鱼的LeetCode算法篇的「LeetCode」617-合并二叉树⚡️就结束了,算法这个东西没有捷径,只能多写多练,多总结,文章的目的其实很简单,就是督促自己去完成算法练习并总结和输出,菜不菜不重要,但是热爱🔥,喜欢大家能够喜欢我的短文,也希望通过文章认识更多志同道合的朋友,如果你也喜欢折腾,欢迎加我好友,一起沙雕,一起进步


相关文章
|
4月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
250 14
|
5月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
111 4
|
5月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
123 10
|
5月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
248 10
|
5月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
273 9
|
11月前
【LeetCode 43】236.二叉树的最近公共祖先
【LeetCode 43】236.二叉树的最近公共祖先
86 0
|
11月前
【LeetCode 38】617.合并二叉树
【LeetCode 38】617.合并二叉树
67 0
|
11月前
【LeetCode 37】106.从中序与后序遍历构造二叉树
【LeetCode 37】106.从中序与后序遍历构造二叉树
82 0
|
11月前
【LeetCode 34】257.二叉树的所有路径
【LeetCode 34】257.二叉树的所有路径
80 0
|
11月前
【LeetCode 32】111.二叉树的最小深度
【LeetCode 32】111.二叉树的最小深度
77 0