前言🌧️
算法,对前端人来说陌生又熟悉,很多时候我们都不会像后端工程师一样重视这项能力。但事实上,算法对每一个程序员来说,都有着不可撼动的地位。
因为开发的过程就是把实际问题转换成计算机可识别的指令,也就是《数据结构》里说的,「设计出数据结构,在施加以算法就行了」。
当然,学习也是有侧重点的,作为前端我们不需要像后端开发一样对算法全盘掌握,有些比较偏、不实用的类型和解法,只要稍做了解即可。
题目🦀
88. 合并两个有序数组
难度简单
给你两个按 非递减顺序 排列的整数数组 nums1
和 nums2
,另有两个整数 m
和 n
,分别表示 nums1
和 nums2
中的元素数目。
请你 合并nums2
到 nums1
中,使合并后的数组同样按 非递减顺序 排列。
**注意:**最终,合并后数组不应由函数返回,而是存储在数组 nums1
中。为了应对这种情况,nums1
的初始长度为 m + n
,其中前 m
个元素表示应合并的元素,后 n
个元素为 0
,应忽略。nums2
的长度为 n
。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6] 解释:需要合并 [1,2,3] 和 [2,5,6] 。 合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1] 解释:需要合并 [1] 和 [] 。 合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1 输出:[1] 解释:需要合并的数组是 [] 和 [1] 。 合并结果是 [1] 。 注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
**进阶:**你可以设计实现一个时间复杂度为 O(m + n)
的算法解决此问题吗?
解题思路🌵
- 此题采取从后往前遍历
- 原地修改时,为了避免从前往后遍历导致原有数组元素被破坏掉
- 我们要选择从后往前遍历!
解题步骤🐂
- 创建三个指针分别指向
- nums1有数字的末尾
- nums2有数字的末尾
- nums1的末尾
- 循环遍历
源码🔥
/** * @param {number[]} nums1 * @param {number} m * @param {number[]} nums2 * @param {number} n * @return {void} Do not return anything, modify nums1 in-place instead. */ var merge = function(nums1, m, nums2, n) { let i = m-1; let j=n-1; let k=m+n-1; while(i>=0||j>=0){ if(i<0){ nums1[k--]=nums2[j--] } else if(j<0){ nums1[k--]=nums1[i--] } else if(nums1[i]<nums2[j]){ nums1[k--]=nums2[j--] } else if(nums1[i]>=nums2[j]){ nums1[k--]=nums1[i--] } } return nums1 };
时间复杂度:O(m+n)
空间复杂度:O(1)
结束语🌞
那么鱼鱼的LeetCode算法篇的「LeetCode」88-合并两个有序数组 ⚡️
就结束了,算法这个东西没有捷径,只能多写多练,多总结,文章的目的其实很简单,就是督促自己去完成算法练习并总结和输出,菜不菜不重要,但是热爱🔥,喜欢大家能够喜欢我的短文,也希望通过文章认识更多志同道合的朋友,如果你也喜欢折腾
,欢迎加我好友
,一起沙雕
,一起进步
。