一、HDFS的优缺点
(1)优点
高容错性。数据保存多个副本,通过增加副本的形式提高容错性,某个副本丢失后,它可以通过其它副本自动恢复。
适合大批量数据处理。处理达到GB、TB,甚至PB级别的数据,处理百万规模以上的文件数量,处理10K节点的规模。
流式文件访问。一次写入多次读取,文件一旦写入不能修改,只能追加,保证数据一致性。
可构建在廉价机器上。通过多副本机制提高可靠性,提供容错和恢复机制。
(2)缺点
不适用HDFS的场景:
低延时数据访问。做不到毫秒级存储数据,但是适合高吞吐率(某一时间内写入大量的数据)的场景。
小文件存储。存储大量小文件会占用NameNode大量的内存来存储文件、目录和块信息。
并发写入、随机读写。一个文件不允许多个线程同时写,仅支持数据追加,不支持文件的随机修改。
二、HDFS架构原理
HDFS架构
NameNode
DataNode
Sencondary NameNode
数据存储细节
(1)NameNode详解
NameNode:就是 master,它是一个主管、管理者。
管理 HDFS 的名称空间
管理数据块(Block)映射信息
配置副本策略
处理客户端读写请求。
Namenode 的目录结构: ${ dfs.name.dir}/current /VERSION
/edits (操作日志文件)
/fsimage (元数据镜像文件)
/fstime (保存最近一次恢复的时间)
Namenode 上保存着 HDFS 的名字空间。对于任何对文件系统元数据产生修改的操作, Namenode 都会使用一种称为 EditLog 的事务日志记录下来。例如,在 HDFS 中创建一个文件, Namenode 就会在 Editlog 中插入一条记录来表示;同样地,修改文件的副本系数也将往 Editlog 插入一条记录。 Namenode 在本地操作系统的文件系统中存储这个 Editlog 。整个文件系统的名 字空间,包括数据块到文件的映射、文件的属性等,都存储在一个称为 FsImage 的文件中,这 个文件也是放在 Namenode 所在的本地文件系统上。
Namenode 在内存中保存着整个文件系统的名字空间和文件数据块映射(Blockmap) 的映像 。这个关键的元数据结构设计得很紧凑,因而一个有 4G 内存的Namenode 足够支撑大量的文件 和目录。当 Namenode 启动时,它从硬盘中读取Editlog 和 FsImage ,将所有 Editlog 中的事务作 用在内存中的 FsImage 上,并将这个新版本的 FsImage 从内存中保存到本地磁盘上,然后删除 旧的 Editlog ,因为这个旧的 Editlog 的事务都已经作用在 FsImage 上了。这个过程称为一个检查 点(checkpoint) 。在当前实现中,检查点只发生在 Namenode 启动时,在不久的将来将实现支持 周期性的检查点。
(2)Secondary NameNode详解
Secondary NameNode:并非 NameNode 的热备。当NameNode 挂掉的时候,它并不能马上替换 NameNode 并提供服务。
辅助 NameNode,分担其工作量。
定期合并 fsimage和fsedits,并推送给NameNode。
在紧急情况下,可辅助恢复NameNode。
SecondaryNameNode会定期和NameNode通信,请求其停止使用EditLog文件,暂时将新的写操作写到一个新的文件edit.new上来,这个操作是瞬间完成,上层写日志的函数完全感觉不到差别;
SecondaryNameNode通过HTTP GET方式从NameNode上获取到FsImage和EditLog文件,并下载到本地的相应目录下;
SecondaryNameNode将下载下来的FsImage载入到内存,然后一条一条地执行EditLog文件中的各项更新操作,使得内存中的FsImage保持最新;这个过程就是EditLog和FsImage文件合并;
SecondaryNameNode执行完(3)操作之后,会通过post方式将新的FsImage文件发送到NameNode节点上
NameNode将从SecondaryNameNode接收到的新的FsImage替换旧的FsImage文件,同时将edit.new替换EditLog文件,通过这个过程EditLog就变小了
(3)HDFS NameSpace详解
HDFS 支持传统的层次型文件组织结构。用户或者应用程序可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数 现有的文件系统类似:用户可以创建、删除、移动或重命名文件。当前, HDFS 不支持用户磁盘配额和访问权限控制,也不支持硬链接和软链接。但 是 HDFS 架构并不妨碍实现这些特性。
Namenode 负责维护文件系统命名空间,任何对文件系统名字空间或属 性的修改都将被 Namenode 记录下来。应用程序可以设置 HDFS 保存的文件 的副本数目。文件副本的数目称为文件的副本系数,这个信息也是由 Namenode 保存的。
(4)DataNode详解
DataNode:就是Slave。NameNode 下达命令,DataNode 执行实际的操作。
存储实际的数据块。
执行数据块的读/写操作。
Datanode 将 HDFS 数据以文件的形式存储在本地的文件系统中,它并不知道有 关 HDFS 文件的信息。它把每个 HDFS 数据块存储在本地文件系统的一个单独的文件 中。 Datanode 并不在同一个目录创建所有的文件,实际上,它用试探的方法来确定 每个目录的最佳文件数目,并且在适当的时候创建子目录。在同一个目录中创建所 有的本地文件并不是最优的选择,这是因为本地文件系统可能无法高效地在单个目 录中支持大量的文件。
当一个 Datanode 启动时,它会扫描本地文件系统,产生一个这些本地文件对应 的所有 HDFS 数据块的列表,然后作为报告发送到 Namenode ,这个报告就是块状态 报告。
(5)Client详解
Client:就是客户端。
文件切分。文件上传 HDFS 的时候,Client 将文件切分成 一个一个的Block,然后进行存储。
与 NameNode交互,获取文件的位置信息。
与 DataNode 交互,读取或者写入数据。
Client 提供一些命令来管理HDFS,比如启动或者关闭HDFS。
Client 可以通过一些命令来访问 HDFS。
(6)HDFS通信协议
所有的 HDFS 通讯协议都是构建在 TCP/IP 协议上。客户端通过一个可 配置的端口连接到 Namenode , 通过 ClientProtocol 与 Namenode 交互。而Datanode 是使用 DatanodeProtocol 与 Namenode 交互。再设计上,DataNode 通过周期性的向 NameNode 发送心跳和数据块来保持和 NameNode 的通信,数据块报告的信息包括数据块的属性,即数据块属于哪 个文件,数据块 ID ,修改时间等, NameNode 的 DataNode 和数据块的映射 关系就是通过系统启动时DataNode 的数据块报告建立的。从 ClientProtocol 和 Datanodeprotocol 抽象出一个远程调用 ( RPC ), 在设计上, Namenode 不会主动发起 RPC , 而是是响应来自客户端和 Datanode 的 RPC 请求。
(7)HDFS的安全模式
Namenode 启动后会进入一个称为安全模式的特殊状态。处于安全模式 的Namenode 是不会进行数据块的复制的。 Namenode 从所有的 Datanode 接收心跳信号和块状态报告。块状态报告包括了某个 Datanode 所有的数据 块列表。每个数据块都有一个指定的最小副本数。当 Namenode 检测确认某 个数据块的副本数目达到这个最小值,那么该数据块就会被认为是副本安全 (safely replicated) 的;在一定百分比(这个参数可配置)的数据块被 Namenode 检测确认是安全之后(加上一个额外的 30 秒等待时间), Namenode 将退出安全模式状态。接下来它会确定还有哪些数据块的副本没 有达到指定数目,并将这些数据块复制到其他 Datanode上。
三、HDFS文件读写的解析
(1)文件读取流程
HDFS的文件读取原理,主要包括以下几个步骤:
首先调用FileSystem对象的open方法,其实获取的是一个DistributedFileSystem的实例。
DistributedFileSystem通过RPC(远程过程调用)获得文件的第一批block的locations,同一block按照重复数会返回多个locations,这些locations按照hadoop拓扑结构排序,距离客户端近的排在前面。
前两步会返回一个FSDataInputStream对象,该对象会被封装成DFSInputStream对象,DFSInputStream可以方便的管理datanode和namenode数据流。客户端调用read方法,DFSInputStream就会找出离客户端最近的datanode并连接datanode。
数据从datanode源源不断的流向客户端。
如果第一个block块的数据读完了,就会关闭指向第一个block块的datanode连接,接着读取下一个block块。这些操作对客户端来说是透明的,从客户端的角度来看只是读一个持续不断的流。
如果第一批block都读完了,DFSInputStream就会去namenode拿下一批blocks的location,然后继续读,如果所有的block块都读完,这时就会关闭掉所有的流。
(2)文件写入流程
HDFS的文件写入原理,主要包括以下几个步骤:
客户端通过调用 DistributedFileSystem 的create方法,创建一个新的文件。
DistributedFileSystem 通过 RPC(远程过程调用)调用NameNode,去创建一个没有blocks关联的新文件。创建前,NameNode会做各种校验,比如文件是否存在,客户端有无权限去创建等。如果校验通过,NameNode 就会记录下新文件,否则就会抛出IO异常。
前两步结束后会返回 FSDataOutputStream 的对象,和读文件的时候相似,FSDataOutputStream 被封装DFSOutputStream,DFSOutputStream 可以协调 NameNode和DataNode。客户端开始写数据到DFSOutputStream,DFSOutputStream会把数据切成一个个小packet,然后排成队列data queue。
DataStreamer 会去处理接受 data queue,它先问询 NameNode 这个新的 block最适合存储的在哪几个DataNode里,比如重复数是3,那么就找到3个最适合的 DataNode,把它们排成一个pipeline。DataStreamer 把 packet 按队列输出到管道的第一个 DataNode 中,第一个DataNode又把 packet 输出到第二个 DataNode 中,以此类推。
DFSOutputStream 还有一个队列叫ack queue,也是由 packet组成,等待DataNode的收到响应,当pipeline中的所有DataNode都表示已经收到的时候,这时akcqueue才会把对应的packet包移除掉。 客户端完成写数据后,调用close方法关闭写入流。
DataStreamer把剩余的包都刷到 pipeline 里,然后等待 ack 信息,收到最后一个 ack 后,通知 DataNode 把文件标示为已完成。
流水线复制:
当客户端向 HDFS 文件写入数据的时候,一开始是写到本地临时文件中。假设该文件的副 本系数设置为 3 ,当本地临时文件累积到一个数据块的大小时,客户端会从 Namenode 获取一个 Datanode 列表用于存放副本。然后客户端开始向第一个 Datanode 传输数据,第一个 Datanode 一小部分一小部分 (4 KB) 地接收数据,将每一部分写入本地仓库,并同时传输该部分到列表中 第二个 Datanode节点。第二个 Datanode 也是这样,一小部分一小部分地接收数据,写入本地 仓库,并同时传给第三个 Datanode 。最后,第三个 Datanode 接收数据并存储在本地。因此, Datanode 能流水线式地从前一个节点接收数据,并在同时转发给下一个节点,数据以流水线的 方式从前一个 Datanode 复制到下一个
更细节的原理:
客户端创建文件的请求其实并没有立即发送给 Namenode ,事实上,在刚开始阶 段 HDFS 客户端会先将文件数据缓存到本地的一个临时文件。应用程序的写操作被透 明地重定向到这个临时文件。当这个临时文件累积的数据量超过一个数据块的大小 ,客户端才会联系 Namenode 。 Namenode 将文件名插入文件系统的层次结构中,并 且分配一个数据块给它。然后返回 Datanode 的标识符和目标数据块给客户端。接着 客户端将这块数据从本地临时文件上传到指定的 Datanode 上。当文件关闭时,在临 时文件中剩余的没有上传的数据也会传输到指定的 Datanode 上。然后客户端告诉 Namenode 文件已经关闭。此时 Namenode 才将文件创建操作提交到日志里进行存储 。如果 Namenode 在文件关闭前宕机了,则该文件将丢失。
四、副本机制
特点:
数据类型单一
副本数比较多
写文件时副本的放置方法
动态的副本创建策略
弱化的副本一致性要求
副本摆放策略: