掌握Redis分布式锁的正确姿势

简介: 掌握Redis分布式锁的正确姿势

本文中案例都会在上传到git上,请放心浏览

git地址:https://github.com/muxiaonong/Spring-Cloud/tree/master/order-lock

本文会使用到 三台 redis 独立服务器,可以自行提前搭建好


前言


在Java中,我们对于锁会比较熟悉,常用的有 synchronized、Lock锁,在java并发编程中,我们通过锁,来实现当多个线程竞争同一个共享资源或者变量而造成的数据不一致的问题,但是JVM锁只能针对于单个应用服务,随着我们业务的发展需要,单体单机部署的系统早已演化成分布式系统,由于分布式系统的多线程、多进程而且分布在不同的机器上,这个时候JVM锁的并发控制就没有效果了,为了解决跨JVM锁并且能够控制共享资源的访问,于是有了分布式锁的诞生。


屏幕快照 2022-05-11 上午10.41.43.png

什么是分布式锁

分布式锁是控制分布式系统之间同步访问共享资源的一种方式。在分布式系统中,常常需要协调他们的动作。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁


为什么JVM锁在分布式下不可以呢?


我们通过代码来看一下就知道,为什么集群下jvm锁是不可靠的呢?我们模拟一下商品抢购的场景,A服务有十个用户去抢购这个商品,B服务有十个用户去抢购这个商品,当有其中一个用户抢购成功后,其他用户不可以在对这个商品进行下单操作,那么到底是A服务会抢到还是B服务会抢到这个商品呢,我们来看一下


当其中有一个用户抢购成功后,status会变成1

image.png


GrabService:


public interface GrabService {
    /**
     * 商品抢单
     * @param orderId
     * @param driverId
     * @return
     */
    public ResponseResult grabOrder(int orderId, int driverId);
}


GrabJvmLockServiceImpl:

@Service("grabJvmLockService")
public class GrabJvmLockServiceImpl implements GrabService {
  @Autowired
  OrderService orderService;
  @Override
  public ResponseResult grabOrder(int orderId, int driverId) {
    String lock = (orderId+"");
    synchronized (lock.intern()) {
      try {
        System.out.println("用户:"+driverId+" 执行下单逻辑");
              boolean b = orderService.grab(orderId, driverId);
              if(b) {
                System.out.println("用户:"+driverId+" 下单成功");
              }else {
                System.out.println("用户:"+driverId+" 下单失败");
              }
          } finally {
          }
    }
    return null;
  }
}

OrderService :

public interface OrderService {
  public boolean grab(int orderId, int driverId);
}

OrderServiceImpl :

@Service
public class OrderServiceImpl implements OrderService {
  @Autowired
  private OrderMapper mapper;
  public boolean grab(int orderId, int driverId) {
    Order order = mapper.selectByPrimaryKey(orderId);
     try {
             Thread.sleep(1000);
         } catch (InterruptedException e) {
             e.printStackTrace();
         }
    if(order.getStatus().intValue() == 0) {
      order.setStatus(1);
      mapper.updateByPrimaryKeySelective(order);
      return true;
    }
    return false;
  }
}

这里我们模拟集群环境,启动两个端口,8004和8005进行访问

这里我们用jmeter进行测试

如果不会jmeter的可以看我之前对tomcat进行压测的文章:tomcat优化


项目启动顺序:先启动 Server-eureka注册中心、在启动 8004和8005端口

image.png


测试结果:

image.png

这里我们可以看到 8004 服务和 8005 服务 同时都有一个用户去下单成功这个商品,但是这个商品只能有一个用户能够去抢到,因此jvm锁如果是在集群或分布式下,是无法保证访问共享变量的数据同时只有一个线程访问的,无法解决分布式,集群环境的问题。所以需要使用到分布锁。


分布式锁三种实现方式


分布式锁的实现方式总共有三种:


基于数据库实现分布式锁

基于缓存(Redis)实现分布式锁

基于Zookeeper实现分布式锁


目录
相关文章
|
5月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
439 2
|
5月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
394 6
|
6月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
4月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
363 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
4月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
6月前
|
NoSQL Redis
Lua脚本协助Redis分布式锁实现命令的原子性
利用Lua脚本确保Redis操作的原子性是分布式锁安全性的关键所在,可以大幅减少由于网络分区、客户端故障等导致的锁无法正确释放的情况,从而在分布式系统中保证数据操作的安全性和一致性。在将这些概念应用于生产环境前,建议深入理解Redis事务与Lua脚本的工作原理以及分布式锁的可能问题和解决方案。
261 8
|
7月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
2163 7
|
缓存 NoSQL Java
为什么分布式一定要有redis?
1、为什么使用redis 分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能和并发。当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis。
1513 0
|
机器学习/深度学习 缓存 NoSQL
|
8月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?