抽丝剥茧聊Kotlin协程之深入理解协程上下文CoroutineContext

简介: 抽丝剥茧聊Kotlin协程之深入理解协程上下文CoroutineContext

1. 前言



如果你对CoroutineContext不了解,本文值得你细细品读,如果一遍看不懂,不妨多读几遍。写作该文的过程也是我对CoroutineContext理解加深的过程。CoroutineContext是协程的基础,值得投入学习


Android开发者对Context都不陌生。在Android系统中,Context可谓神通广大,它可以获取应用资源,可以获取系统资源,可以启动Activity。Context有几个大名鼎鼎的子类,Activity、Application、Service,它们都是应用中非常重要的组件。


协程中也有个类似的概念,CoroutineContext。它是协程中的上下文,通过它我们可以控制协程在哪个线程中执行,可以设置协程的名字,可以用它来捕获协程抛出的异常等。

我们知道,通过CoroutineScope.launch方法可以启动一个协程。该方法第一个参数的类型就是CoroutineContext。默认值是EmptyCoroutineContext单例对象。


image.png

在开始讲解CoroutineContext之前我们来看一段协程中经常会遇到的代码

image.png


刚开始学协程的时候,我们经常会和Dispatchers.Main、Job、CoroutineName、CoroutineExceptionHandler打交道,它们都是CoroutineContext的子类。我们也很容易单独理解它们,Dispatchers.Main指把协程分发到主线程执行,Job可以管理协程的生命周期,CoroutineName可以设置协程的名字,CoroutineExceptionHandler可以捕获协程的异常。但是+操作符对大部分的Java开发者甚至Kotlin开发者而言会感觉到新鲜又难懂,在协程中CoroutineContext+到底是什么意思?


其实+操作符就是把两个CoroutineContext合并成一个链表,后文会详细讲解


2. CoroutineContext类图一览


image.png

根据类图结构我们可以把它分成四个层级:


  1. CoroutineContext 协程中所有上下文相关类的父接口。
  2. CombinedContext、Element、EmptyCoroutineContext。它们是CoroutineContext的直接子类。
  3. AbstractCoroutineContextElement、Job。这两个是Element的直接子类。
  4. CoroutineName、CoroutineExceptionHandler、CoroutineDispatcher(包含Dispatchers.Main和Dispatchers.Default)。它们是AbstractCoroutineContextElement的直接子类。


图中红框处,CombinedContext定义了size()和contains()方法,这与集合操作很像,CombinedContext是CoroutineContext对象的集合,而Element和EmptyCoroutineContext却没有定义这些方法,真正实现了集合操作的协程上下文只有CombinedContext,后文会详细讲解


3. CoroutineContext接口



CoroutineContext源码如下:


image.png

首先我们看下官方注释,我将它的作用归纳为:


Persistent context for the coroutine. It is an indexed set of [Element] instances. An indexed set is a mix between a set and a map. Every element in this set has a unique [Key].

  1. CoroutineContext是协程的上下文。
  2. CoroutineContext是element的set集合,没有重复类型的element对象。
  3. 集合中的每个element都有唯一的Key,Key可以用来检索元素。


相信大多数的人看到这样的解释时,都会心生疑惑,既然是set类型为啥不直接用HashSet来保存Element。CoroutineContext的实现原理又是什么呢?原因是考虑到协程嵌套,用链表实现更好。


接着我们来看下该接口定义的几个方法


image.png

4. Key接口



image.png

Key是一个接口定义在CoroutineContext中的一个接口,作为接口它没有声明任何的方法,那么其实它没有任何真正有用的意义,它只是用来检索。我们先来看下,协程库中是如何使用Key接口的。

image.png

通过观察协程官方库中的例子,我们发现Element的子类都必须重写Key这个属性,而且Key的泛型类型必须和类名相同。以CoroutineName为例,Key是一个伴生对象,同时Key的泛型类型也是CoroutineName。


为了方便理解,我仿照写了MyElement类,如下:


image.png

通过对比kt类和反编译的java类我们看到 Key就是一个静态变量,而且它的实现类,其实啥也没干。它的作用与HashMap中的Key类似:


  1. 实现key-value功能,为插入和删除提供检索功能
  2. Key是static静态变量,全局唯一,为Element提供唯一性保障

Kotlin语法糖


coroutineContext.get(CoroutineName.Key)

coroutineContext.get(CoroutineName)

coroutineContext[CoroutineName]

coroutineContext[CoroutineName.Key]

写法是等价的


5. CoroutineContext.get方法


源码(整理在一起,下同)


image.png

image.png

讲解


通过Key检索Element。返回值只能是Element或者null,链表节点中的元素值。

  1. Element get方法:只要Key与当前Element的Key匹配上了,返回该Element否则返回null。
  2. CombinedContext get方法:遍历链表,查询与Key相等的Element,如果没找到返回null。


6. CoroutineContext.plus方法

源码


image.png


image.png


讲解


将两个CoroutineContext组合成一个CoroutineContext,如果是两个类型相同的Element会返回一个新的Element。如果是两个不同类型的Element会返回一个CombinedContext。如果是多个不同类型的Element会返回一条CombinedContext链表。


我将上述算法总结成了5种场景,不过在介绍这5种场景前,我们先讲解CombinedContext的数据结构。


7. CombinedContext分析


image.png

因为CombinedContext是CoroutineContext的子类,left也是CoroutineContext类型的,所以它的数据结构是链表。我们经常用next来表示链表的下一个节点。那么为什么这里取名叫left呢?我甚至怀疑写这段代码的是个左撇子。真正的原因是,协程可以启动子协程,子协程又可以启动孙协程。父协程在左边,子协程在右边


image.png

image.png

嵌套启动协程越是外层的协程的Context越在左边,大概示意图如下 (真实并非如此,比这更复杂)

image.png


链表的两个知识点在此都有体现。CoroutineContext.plus方法中使用的是头插法。CombinedContext的toString方法采用的是链表倒序打印法。


8. 五种plus场景



根据plus源码,我总结出会覆盖到五种场景。

image.png


  1. plus EmptyCoroutineContext
  2. plus 相同类型的Element
  3. plus方法的调用方没有Dispatcher相关的Element
  4. plus方法的调用方只有Dispatcher相关的Element
  5. plus方法的调用方是包含Dispatcher相关Element的链表


结果如下:


  1. Dispatchers.Main + EmptyCoroutineContext 结果:Dispatchers.Main
  2. CoroutineName("c1") + CoroutineName("c2")结果: CoroutineName("c2")。相同类型的直接替换掉。
  3. CoroutineName("c1") + Job()结果:CoroutineName("c1") <- Job。头插法被plus的(Job)放在链表头部
  4. Dispatchers.Main + Job()结果:Job <- Dispatchers.Main。虽然是头插法,但是ContinuationInterceptor必须在链表头部。
  5. Dispatchers.Main + Job() + CoroutineName("c5")结果:Job <- CoroutineName("c5") <- Dispatchers.Main。Dispatchers.Main在链表头部,其它的采用头插法。

如果不考虑Dispatchers.Main的情况。我们可以把+<-代替。CoroutineName("c1") + Job()等价于CoroutineName("c1") <- Job


9. CoroutineContext的minusKey方法



源码


image.png

讲解


  1. Element minusKey方法:如果Key与当前element的Key相等,返回EmptyCoroutineContext,否则相当于没减成功,返回当前element
  2. CombinedContext minusKey方法:删除链表中符合条件的节点,分三种情况。

三种情况以下面链表为例


Job <- CoroutineName("c5") <-Dispatchers.Main


  1. 没找到节点:minusKey(MyElement)。在Job节点处走newLeft === left分支,依此类推,在CoroutineName处走同样的分支,在Dispatchers.Main处走同样的分支。
  2. 节点在尾部:minusKey(Job)。在CoroutineName("c5")节点走newLeft === EmptyCoroutineContext分支,依此往头部递归
  3. 节点不在尾部:minusKey(CoroutineName)。在Dispatchers.Main节点处走else分支


10. 总结



学习CoroutineContext首先要搞清楚各类之间的继承关系,其次,CombinedContext各具体Element的集合,它的数据结构是链表,如果读者对链表增删改查操作熟悉的话,那么很容易就能搞懂CoroutineContext原理,否则想要搞懂CoroutineContext那简直如盲人摸象。



相关文章
|
2月前
|
JSON 调度 数据库
Android面试之5个Kotlin深度面试题:协程、密封类和高阶函数
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点。文章详细解析了Kotlin中的协程、扩展函数、高阶函数、密封类及`inline`和`reified`关键字在Android开发中的应用,帮助读者更好地理解和使用这些特性。
30 1
|
4月前
|
调度 开发者 UED
Kotlin 中的协程是什么?
【8月更文挑战第31天】
278 0
|
6月前
|
存储 Java 调度
Android面试题之Kotlin 协程的挂起、执行和恢复过程
了解Kotlin协程的挂起、执行和恢复机制。挂起时,状态和上下文(局部变量、调用栈、调度器等)被保存;挂起点通过`Continuation`对象处理,释放线程控制权。当恢复条件满足,调度器重新分配线程,调用`resumeWith`恢复执行。关注公众号“AntDream”获取更多并发知识。
134 2
|
7月前
|
移动开发 Android开发 开发者
构建高效Android应用:Kotlin与协程的完美融合
【5月更文挑战第25天】 在移动开发的世界中,性能和响应性是衡量应用质量的关键指标。随着Kotlin的流行和协程的引入,Android开发者现在有了更强大的工具来提升应用的性能和用户体验。本文深入探讨了Kotlin语言如何与协程相结合,为Android应用开发带来异步处理能力的同时,保持代码的简洁性和可读性。我们将通过实际案例分析,展示如何在Android项目中实现协程,以及它们如何帮助开发者更有效地管理后台任务和用户界面的流畅交互。
|
7月前
|
移动开发 监控 Android开发
构建高效安卓应用:Kotlin 协程的实践与优化
【5月更文挑战第16天】 在移动开发领域,性能优化一直是开发者们追求的重要目标。特别是对于安卓平台来说,由于设备多样性和系统资源的限制,如何提升应用的响应性和流畅度成为了一个关键议题。近年来,Kotlin 语言因其简洁、安全和高效的特点,在安卓开发中得到了广泛的应用。其中,Kotlin 协程作为一种轻量级的并发解决方案,为异步编程提供了强大支持,成为提升安卓应用性能的有效手段。本文将深入探讨 Kotlin 协程在安卓开发中的应用实践,以及通过合理设计和使用协程来优化应用性能的策略。
68 8
|
7月前
|
移动开发 数据库 Android开发
构建高效Android应用:探究Kotlin的协程优势
【5月更文挑战第22天】随着移动开发技术的不断进步,Android平台的性能优化已经成为开发者关注的焦点。在众多提升应用性能的手段中,Kotlin语言提供的协程概念因其轻量级线程管理和异步编程能力而受到广泛关注。本文将深入探讨Kotlin协程在Android开发中的应用,以及它如何帮助开发者构建出更高效、响应更快的应用,同时保持代码的简洁性和可读性。
|
7月前
|
移动开发 Android开发 开发者
构建高效安卓应用:Kotlin 协程的实践指南
【5月更文挑战第18天】 随着移动开发技术的不断进步,安卓平台亟需一种高效的异步编程解决方案来应对日益复杂的应用需求。Kotlin 协程作为一种新兴的轻量级线程管理机制,以其简洁的语法和强大的功能,成为解决这一问题的关键。本文将深入探讨Kotlin协程在安卓开发中的实际应用,从基本概念到高级技巧,为开发者提供一份全面的实践指南,旨在帮助读者构建更加高效、稳定的安卓应用。
|
7月前
|
移动开发 安全 Android开发
构建高效Android应用:Kotlin与协程的完美结合
【5月更文挑战第17天】 在移动开发领域,性能优化和流畅的用户体验是关键。对于Android平台而言,Kotlin语言凭借其简洁性和功能安全性成为开发的首选。与此同时,协程作为一种新的并发处理方式,在简化异步编程方面展现出巨大潜力。本文将深入探讨如何通过Kotlin语言以及协程技术,提升Android应用的性能和响应能力,并确保用户界面的流畅性。
|
7月前
|
移动开发 数据库 Android开发
构建高效Android应用:Kotlin与协程的完美结合
【5月更文挑战第7天】 在移动开发领域,性能优化和资源管理始终是核心议题。随着Kotlin语言的普及,其提供的协程特性为Android开发者带来了异步编程的新范式。本文将深入探讨如何通过Kotlin协程来优化Android应用的性能,实现流畅的用户体验,并减少资源消耗。我们将分析协程的核心概念,并通过实际案例演示其在Android开发中的应用场景和优势。
|
7月前
|
移动开发 数据处理 Android开发
构建高效Android应用:Kotlin的协程与Flow的使用
【5月更文挑战第23天】 在移动开发领域,性能优化和异步编程一直是核心议题。随着Kotlin语言在Android开发中的普及,其提供的协程(coroutines)和流式编程(Flow)功能为开发者带来了革命性的工具,以更简洁、高效的方式处理异步任务和数据流。本文将深入探讨Kotlin协程和Flow在Android应用中的实际应用,以及它们如何帮助开发者编写更加响应迅速且不阻塞用户界面的应用程序。我们将通过具体案例分析这两种技术的优势,并展示如何在现有项目中实现这些功能。