问题域和限界上下文
假如将整个系统中那么多的场景、涉及的那么多领域对象,全部绘制在一张大图上,可以想象这张大图需要绘制出密密麻麻的领域对象,以及它们之间纷繁复杂的对象间关系。绘制这样的图,绘制的人非常费劲,看这张图的人也非常费劲,这样的图也不利于我们理清思路、交流思想及提高设计质量。
正确的做法就是将整个系统划分成许多相对独立的业务场景,在一个一个的业务场景中进行领域分析与建模,这样的业务场景称为 “问题子域”,简称“子域”。
领域驱动核心的设计思想,就是将对软件的分析与设计还原到真实世界中,那么就要先分析和理解真实世界的业务与问题。而真实世界的业务与问题叫作 “问题域”,这里面的业务规则与知识叫 “业务领域知识”,譬如:
- 电商网站的“问题域”是人们如何进行在线购物,购物的流程是怎样的;
- 在线订餐系统的“问题域”是人们如何在线订餐,饭店如何在线接单,系统又是如何派送骑士去配送的。
然而,不论是电商网站还是在线购物系统,都有一个非常庞大而复杂的问题域。要一次性分析清楚这个问题域对我们来说是有难度的,因此需要采用 “分而治之”的策略,将这个问题域划分成许多个问题子域。比如:
- 电商网站包含了用户选购、下单、支付、物流等多个子域;
- 在线订餐系统包含了用户下单、饭店接单、骑士派送等子域。
如果某个子域比较复杂,在子域的基础上还可以进一步划分子域。
因此,一个复杂系统的领域驱动设计,就是以子域为中心进行领域建模,绘制出一张一张的领域模型设计,然后以此作为基础指导程序设计。这一张一张的领域模型设计,称为“限界上下文”(Context Bounds,CB)。
DDD 中限界上下文的设计,很好地体现了高质量软件设计中 “单一职责原则” 的要求,即每个限界上下文中实现的都是软件变化同一个原因的业务。比如,“用户下单”这个限界上下文都是实现用户下单的相关业务。这样,当“用户下单”的相关业务发生变更的时候,只与“用户下单”这个限界上下文有关,只需要对它进行修改就行了,与其他限界上下文无关。这样,需求变更的代码修改范围缩小了,维护成本也就降低了。
在用户下单的过程中,对用户信息的读取是否也应该在“用户下单”这个限界上下文中实现呢?答案是否定的,因为读取用户信息不是用户下单的职责,当用户下单业务发生变更的时候,用户信息不一定变;用户信息变更的时候,用户下单也不一定变,它们是软件变化的两个原因。
因此,应当将读取用户信息的操作交给“用户信息管理”限界上下文,“用户下单”限界上下文只是对它的接口进行调用。通过这样的划分,实现了限界上下文内的高内聚和限界上下文间的低耦合,可以很好地降低日后代码变更的成本、提高软件设计质量。而限界上下文之间的这种相互关系,称为“上下文地图”(Context Map)。
限界上下文与微服务
所谓“限界上下文内的高内聚”,也就是每个限界上下文内实现的功能,都是软件变化的同一个原因的代码。因为这个原因的变化才需要修改这个限界上下文,而不是这个原因的变化就不需要修改这个限界上下文,修改与它无关。正是因为限界上下文有如此好的特性,才使得现在很多微服务团队,运用限界上下文作为微服务拆分的原则,即每个限界上下文对应一个微服务。
按照这样的原则拆分出来的微服务系统,在今后变更维护时,可以很好地将每次的需求变更,快速落到某个微服务中变更。这样,变更这个微服务就实现了该需求,升级该服务后就可以交付用户使用了。这样的设计,使得越来越多的规划开发团队,今后可以实现低成本维护与快速交付,进而快速适应市场变化而提升企业竞争力。
譬如,在电商网站的购物过程中,购物、下单、支付、物流,都是软件变化不同的原因,因此,按照不同的业务场景划分限界上下文,然后以此拆分微服务。那么,当购物变更时就修改购物微服务,下单变更就修改下单微服务,但它们在业务处理过程中都需要读取商品信息,因此调用“商品管理”微服务来获取商品信息。这样,一旦商品信息发生变更,只与“商品管理”微服务有关,与其他微服务无关,那么维护成本将得到降低,交付速度得到提升。
所谓“限界上下文间的低耦合”,就是限界上下文通过上下文地图相互调用时,通过接口进行调用。如下图所示,模块 A 需要调用模块 B,那么它就与模块 B 形成了一种耦合,这时:
- 如果需要复用模块 A,那么所有有模块 A 的地方都必须有模块 B,否则模块 A 就会报错;
- 如果模块 B 还要依赖模块 C,模块 C 还要依赖模块 D,那么所有使用模块 A 的地方都必须有模块 B、C、D,使用模块 A 的成本就会非常高昂。
然而,如果模块 A 不是依赖模块 B,而是依赖接口 B',那么所有需要模块 A 的地方就不一定需要模块 B;如果模块 F 实现了接口 B',那么模块 A 调用模块 F 就可以了。这样,调用方和被调用方的耦合就被解开。
在代码实现时,可以通过微服务来实现“限界上下文间”的“低耦合”。比如,“下单”微服务要去调用“支付”微服务。在设计时:
- 首先在“下单”微服务中增加一个“支付”接口,这样在“下单”微服务中所有对支付的调用,都是对该接口的调用;
- 接着,在其他“支付”微服务中实现支付,比如,现在设计了 A、 B 两个“支付”微服务,在系统运行时配置的是 A 服务,那么“下单”微服务调用的就是 A;如果配置的是 B 服务,调用的就是 B。
这样,“下单”微服务与“支付”微服务之间的耦合就被解开,使得系统可以通过修改配置,去应对各种不同的用户环境与需求。
有了限界上下文的设计,使得系统在应对复杂应用时,设计质量提高、变更成本降低。
- 过去,每个模块在读取用户信息时,都是直接读取数据库中的用户信息表,那么一旦用户信息表发生变更,各个模块都要变更,变更成本就会越来越高。
- 现在,采用领域驱动设计,读取用户信息的职责交给了“用户管理”限界上下文,其他模块都是调用它的接口,这样,当用户信息表发生变更时,只与“用户管理”限界上下文有关,与其他模块无关,变更维护成本就降低了。通过限界上下文将整个系统按照逻辑进行了划分,但从物理上它们都还是一个项目、运行在一个 JVM 中,这种限界上下文只是“逻辑边界”。
- 今后,将单体应用转型成微服务架构以后,各个限界上下文都是运行在各自不同的微服务中,是不同的项目、不同的 JVM。不仅如此,进行微服务拆分的同时,数据库也进行了拆分,每个微服务都是使用不同的数据库。这样,当各个微服务要访问用户信息时,它们没有访问用户数据库的权限,就只能通过远程接口去调用“用户”微服务开放的相关接口。这时,这种限界上下文就真正变成了“物理边界”,如下图所示:
微服务拆分的困局
现如今,许多软件团队都在加入微服务转型的行列,将原有的越来越复杂的单体应用,拆分为一个一个简单明了的微服务,以降低系统微服务的复杂性,这是没有问题的。然而,现在最大的问题是微服务应当如何拆分。
如上图所示,以往许多的系统是这样设计的。现在,如果还按照这样的设计思路简单粗暴地拆分为多个微服务以后,对系统日后的维护将是灾难性的。
- 当多个模块都要读取商品信息表时,是直接通过 JDBC(Java Database Connectivity)去读取这个表。
- 接着,按照这样的思路拆分微服务,多个微服务都要读取商品信息表。
- 这样,一旦商品信息表发生变更,多个微服务都需要变更。不仅多个团队都要为了维护这个需求修改代码,而且他们的微服务需要同时修改、同时发布、同时升级。
如果每次的维护都是这样进行,不仅微服务的优势不能发挥出来,还会使得维护的成本更高。如果微服务被设计成这样,还真不如不用微服务。
这里的关键问题在于,当多个微服务都要读取同一个表时,也就意味着同一个软件变化原因(因商品信息而变更)的代码被分散到多个微服务中。这时,当系统因该原因而变化时,代码的修改自然就会分散到多个微服务上。也就是说,以上设计问题的根源违反了“单一职责原则”,使微服务的设计不再高内聚。微服务该怎样设计、怎样拆分?关键就在于“小而专”,这里的“专”就是高内聚。
因此,微服务设计不是简单的拆分,而是对设计提出了更高的要求,即要做到“高内聚”。只有这样,才能让日后的变更能尽量落到某个微服务上维护,从而降低维护成本。唯有这样才能将微服务的优势发挥出来,才是微服务正确的打开方式。
为了让微服务设计做到高内聚,最佳的实践则是 DDD:
- 先从 DDD 开始需求分析、领域建模,逐渐建立起多个问题子域;
- 再将问题子域落实到限界上下文,它们之间的关联形成上下文地图;
- 最后,各子域落实到微服务中贫血模型或充血模型的设计,从而在微服务之间依据上下文地图形成接口。
唯有这样的设计,才能很好地做到“微服务之间低耦合,微服务之内高内聚”的设计目标。
总结
总而言之,微服务设计的困局就是拆分,拆分的核心就是“小而专”“高内聚”。因此,破解微服务困局的关键就是 DDD。有了 DDD,就使得微服务团队在面对软件越来越复杂的业务时,能够分析清楚业务,能够想明白设计,从而提高微服务的设计质量。