JVM性能优化(二)垃圾回收算法详解(3)

简介: JVM性能优化(二)垃圾回收算法详解

3.2、并行垃圾收集器


并行垃圾收集器在串行垃圾收集器的基础之上做了改进,将单线程改为多线程进行垃圾回收,这样可以缩短垃圾回收的时间(这里是指,并行能力较强的机器)

不过,并行垃圾收集器在收集的过程中也会暂停应用程序,这个和串行垃圾回收器是一样的,只是并行执行,速度更快些,暂停的时间更短一些。


3.2.1 parNew垃圾收集器


ParNew垃圾收集器是工作在年轻代上的,只是将串行的垃圾收集器改为了并行。

通过 -XX:UseParNewGC 参数设置年轻代使用ParNew回收器,老年代使用的依然是串行收集器。


测试:

image.png


# 参数
-XX:+UseParNewGC -XX:+PrintGCDetails -Xms16m -Xmx16m
# 打印的日志信息
[GC (Allocation Failure) [ParNew: 4416K->512K(4928K), 0.0015707 secs] 4416K->1818K(15872K), 0.0016110 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[Full GC (Allocation Failure) [Tenured: 10944K->1185K(10944K), 0.0086455 secs] 15872K->1185K(15872K), [Metaspace: 3835K->3835K(1056768K)], 0.0086862 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

由以上信息可以看出,ParNew: 使用的是ParNew收集器,其他信息和串行收集器一致。


3.2.2 ParallelGC垃圾收集器


ParallelGC垃圾收集器工作机制和ParNewGC收集器一样,只是在此基础之上,新增了两个和系统吞吐量相关的参数,使得其使用起来更加的灵活和高效

相关参数如下:


-XX:+UserParallelGC: 年轻代使用ParallelGC垃圾回收器,老年代使用串行回收器


-XX:+UseParallelOldGC: 年轻代使用ParallelGC垃圾回收器,来年代使用ParallelOldGC垃圾回收器


-XX:MaxGCPauseMillis:


设置最大的垃圾收集时的停顿时间,单位为毫秒

需要注意的是,ParallelGC为了达到设置的停顿时间,可能会调整堆大小或其他的参数,如果堆的大小设置的较小,就会导致GC工作变的频繁,反而可能影响到性能。

使用这个参数需谨慎

-XX:GCTimeRatio


设置垃圾回收时间占程序运行时间的百分比,公式为 1/(1+n)

它的值为 0~100 之间的数字,默认值为99,也就是垃圾回收时间不能超过1%

-XX:UseAdaptiveSizePolicy:


自适应GC模式,垃圾回收器将自动调整新生代,老年代等参数,达到吞吐量,堆大小、停顿时间之间的平衡

一般用于,手动调整参数比较困难的场景,让收集器自动进行调整

#参数
-XX:+UseParallelGC -XX:+UseParallelOldGC -XX:MaxGCPauseMillis=100 -XX:+PrintGCDetails -Xms16m -Xmx16m
#打印的信息
[GC (Allocation Failure) [PSYoungGen: 4096K->512K(4608K)] 4096K->1683K(15872K), 0.0021804 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[Full GC (Ergonomics) [PSYoungGen: 1472K->0K(3584K)] [ParOldGen: 9577K->3990K(11264K)] 11049K->3990K(14848K), [Metaspace: 3828K->3828K(1056768K)], 0.0191664 secs] [Times: user=0.01 sys=0.00, real=0.02 secs]


3.3、CMS垃圾收集器


CMS全称 Concurrent Mark Sweep ,是一款并发的、使用标记-清除算法的垃圾回收器,该回收器是针对老年代垃圾回收的,通过参数 -XX:+UseConcMarkSweepGC进行设置的


CMS垃圾回收器的执行过程中如下:

image.png


初始化标记(CMS-initial-mark),标记root,会导致stw

并发标记(CMS-concurrent-mark),与用户线程同时运行

预清理(CMS-concurrent-preclean),与用户线程同时运行

重新标记(CMS-remark),会导致stw

并发清除(CMS-concurrent-sweep),与用户线程同时运行

调整堆大小,设置CMS在清理之后进行内存压缩,目的是清理内存中的碎片

并发重置状态等待下次CMS的处罚(CMS-concurrent-reset),与用户线程同时运行

测试:

image.png


#设置启动参数
-XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -Xms16m -Xmx16m
#运行日志
[GC (Allocation Failure) [ParNew: 4416K->511K(4928K), 0.0050460 secs] 4416K->1954K(15872K), 0.0050891 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 
#第一步:初始3标记
[GC (CMS Initial Mark) [1 CMS-initial-mark: 6075K(10944K)] 6938K(15872K), 0.0003563 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
#第二步:并发标记
[CMS-concurrent-mark-start]
[CMS-concurrent-mark: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
#第三步:预处理
[CMS-concurrent-preclean-start]
[CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
#第四步:重新标记
[GC (CMS Final Remark) [YG occupancy: 862 K (4928 K)][Rescan (parallel) , 0.0001950 secs][weak refs processing, 0.0000292 secs][class unloading, 0.0003607 secs][scrub symbol table, 0.0005794 secs][scrub string table, 0.0002047 secs][1 CMS-remark: 6075K(10944K)] 6938K(15872K), 0.0015122 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
#第五步:并发清理
[CMS-concurrent-sweep-start]
[CMS-concurrent-sweep: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
#第六步:重置
[CMS-concurrent-reset-start]
[CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

四、结束语


今天的内容就到这里了,文中详细描述了 垃圾回收算法和垃圾收集器的类型和作用,也通过案例给大家展示出来了,大家有什么疑问或者问题可以在下方留言,我会在第一时间回复大家,下一篇会讲最重要的垃圾收集器——G1垃圾收集器,感兴趣的小伙伴记得关注,大家加油,我是牧小农,我为自己代言。

目录
相关文章
|
29天前
|
监控 算法 Java
Java虚拟机(JVM)的垃圾回收机制深度解析####
本文深入探讨了Java虚拟机(JVM)的垃圾回收机制,旨在揭示其背后的工作原理与优化策略。我们将从垃圾回收的基本概念入手,逐步剖析标记-清除、复制算法、标记-整理等主流垃圾回收算法的原理与实现细节。通过对比不同算法的优缺点及适用场景,为开发者提供优化Java应用性能与内存管理的实践指南。 ####
|
21天前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
26 0
|
20天前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
24天前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
34 1
|
27天前
|
监控 算法 Java
Java虚拟机垃圾回收机制深度剖析与优化策略####
【10月更文挑战第21天】 本文旨在深入探讨Java虚拟机(JVM)中的垃圾回收机制,揭示其工作原理、常见算法及参数调优技巧。通过案例分析,展示如何根据应用特性调整GC策略,以提升Java应用的性能和稳定性,为开发者提供实战中的优化指南。 ####
41 5
|
29天前
|
存储 算法 安全
JVM常见面试题(四):垃圾回收
堆区域划分,对象什么时候可以被垃圾器回收,如何定位垃圾——引用计数法、可达性分析算法,JVM垃圾回收算法——标记清除算法、标记整理算法、复制算法、分代回收算法;JVM垃圾回收器——串行、并行、CMS垃圾回收器、G1垃圾回收器;强引用、软引用、弱引用、虚引用
|
27天前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
28天前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
48 1
|
27天前
|
算法 Java
JVM有哪些垃圾回收算法?
(1)标记清除算法: 标记不需要回收的对象,然后清除没有标记的对象,会造成许多内存碎片。 (2)复制算法: 将内存分为两块,只使用一块,进行垃圾回收时,先将存活的对象复制到另一块区域,然后清空之前的区域。用在新生代 (3)标记整理算法: 与标记清除算法类似,但是在标记之后,将存活对象向一端移动,然后清除边界外的垃圾对象。用在老年代
22 0
|
18天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。